================================================================================ Figure 1 Note: to plot the poloidal projections of the field lines as shown in the figures, use a streamline plotting tool (such as the Matlab "streamline" function) with the radial (r) and vertical (z) components of the magnetic field vectors given below. 2-dimensional arrays: Br_nstx: radial component of the magnetic field for the NSTX-like configuration on an R-Z grid as shown in Fig. 1b Bz_nstx: vertical component of the magnetic field for the NSTX-like configuration on an R-Z grid as shown in Fig. 1b Bphi_nstx: toroidal component of the magnetic field for the NSTX-like configuration on an R-Z grid as shown in Fig. 1b Br_d3d: radial component of the magnetic field for the DIII-D-like configuration on an R-Z grid as shown in Fig. 1c Bz_d3d: vertical component of the magnetic field for the DIII-D-like configuration on an R-Z grid as shown in Fig. 1c Bphi_d3d: toroidal component of the magnetic field for the DIII-D-like configuration on an R-Z grid as shown in Fig. 1c rGrid.csv: R coordinates of the grid points for all above arrays zGrid.csv: Z coordinates of the grid points for all above arrays 1-dimensional arrays: rWall.csv: R coordinates of the vessel wall for Fig. 1b and 1c zWall.csv: Z coordinates of the vessel wall for Fig. 1b and 1c rCoil.csv: R coordinates of the PF coils for Fig. 1b and 1c zCoil.csv: Z coordinates of the PF coils for Fig. 1b and 1c rElec_nstx.csv: R coordinates of the biasing electrode for the NSTX-like configuration shown in Fig. 1b zElec_nstx.csv: Z coordinates of the biasing electrode for the NSTX-like configuration shown in Fig. 1b rElec_d3d.csv: R coordinates of the biasing electrode for the DIII-D-like configuration shown in Fig. 1c zElec_d3d.csv: Z coordinates of the biasing electrode for the DIII-D-like configuration shown in Fig. 1c ================================================================================ Figure 2 1-dimensional arrays: lcp.csv: product of connection length and pressure in torr-m vbd.csv: breakdown voltage for the corresponding values of lcp assuming A = 510 m^-1 Torr^-1, B = 12500 V m^-1 Torr^-1, and gamma = 0.582 in accordance with Equation 1 in the paper ================================================================================ Figure 3 2-dimensional arrays: pMin_nstx.csv: p_min (Eq. 2 in the paper) for the NSTX-like configuration. Values of zero indicate that breakdown cannot occur at the respective grid point. rGrid_nstx.csv: R coordinates of the corresponding grid points in pMin_nstx.csv. zGrid_nstx.csv: Z coordinates of the corresponding grid points in pMin_nstx.csv. pMin_d3d.csv: p_min (Eq. 2 in the paper) for the DIII-D-like configuration. Values of zero indicate that breakdown cannot occur at the respective grid point. rGrid_d3d.csv: R coordinates of the corresponding grid points in pMin_d3d.csv. zGrid_d3d.csv: Z coordinates of the corresponding grid points in pMin_d3d.csv. 1-dimensional arrays: rWall.csv: R coordinates of the vessel wall for Fig. 1b and 1c zWall.csv: Z coordinates of the vessel wall for Fig. 1b and 1c rElec_nstx.csv: R coordinates of the biasing electrode for the NSTX-like configuration shown in Fig. 1b zElec_nstx.csv: Z coordinates of the biasing electrode for the NSTX-like configuration shown in Fig. 1b rElec_d3d.csv: R coordinates of the biasing electrode for the DIII-D-like configuration shown in Fig. 1c zElec_d3d.csv: Z coordinates of the biasing electrode for the DIII-D-like configuration shown in Fig. 1c ================================================================================ Figure 4 1-dimensional arrays: rWall_25cm.csv: R coordinates of the vessel wall with original ST-FNSF geometry zWall_25cm.csv: Z coordinates of the vessel wall with original ST-FNSF geometry rWall_40cm.csv: R coordinates of the vessel wall with an enlarged lower divertor zWall_40cm.csv: Z coordinates of the vessel wall with an enlarged lower divertor ================================================================================ Figure 5 2-column arrays, in which the first column is always time in seconds: Ip_52mWb.csv: Plasma current (A) with 52 mWb injector flux (Fig. 5a) Ip_104mWb.csv: Plasma current (A) with 104 mWb injector flux (Fig. 5a) Ip_208mWb.csv: Plasma current (A) with 208 mWb injector flux (Fig. 5a) pSelf_52mWb.csv: Self-heating power (MW) with 52 mWb injector flux (Fig. 5b) pSelf_104mWb.csv: Self-heating power (MW) with 104 mWb injector flux (Fig. 5b) pSelf_208mWb.csv: Self-heating power (MW) with 208 mWb injector flux (Fig. 5b) Te_52mWb.csv: Electron temperature (eV) with 52 mWb injector flux (Fig. 5c) Te_104mWb.csv: Electron temperature (eV) with 104 mWb injector flux (Fig. 5c) Te_208mWb.csv: Electron temperature (eV) with 208 mWb injector flux (Fig. 5c) Li_52mWb.csv: Normalized inducatnce with 52 mWb injector flux (Fig. 5d) Li_104mWb.csv: Normalized inducatnce with 104 mWb injector flux (Fig. 5d) Li_208mWb.csv: Normalized inducatnce with 208 mWb injector flux (Fig. 5d) ================================================================================