fig1. cdf contains 22 variables

- 1) time_epoch_fgm epoch time, x axis for Fig. 1(a)
- 2) B_L L component of the magnetic field, blue line in Fig. 1(a)
- 3) B_M M component of the magnetic field, red line in Fig. 1(a)
- 4) B_N N component of the magnetic field, green line in Fig. 1(a)
- 5) time_epoch_scm epoch time, x axis for Fig. 1(b)
- 6) B_L_AC L component of the AC magnetic field, blue line in Fig. 1(b)
- 7) B_M_AC M component of the AC magnetic field, red line in Fig. 1(b)
- 8) B_N_AC N component of the AC magnetic field, green line in Fig. 1(b)
- 9) time_epoch_spec epoch time, x axis for Fig. 1(c)
- 10) frequency y axis for Fig. 1(c) and (e)
- 11) B_sepct magnetic field spectrogram, color contours in Fig. 1(c)
- 12) f_LH lower hybrid frequency, black lines in Fig. 1 (c) and (e)
- 13) E_L_AC L component of the AC electric field, blue line in Fig. 1(d)
- 14) E M AC M component of the AC electric field, red line in Fig. 1(d)
- 15) E_N_AC N component of the AC electric field, green line in Fig. 1(d)
- 16) time_epoch_espec epoch time, x axis in Fig. 1(e)
- 17) E_spect electric field spectrogram, color contours in Fig. 1(e)
- 18) time_epoch_fpe epoch time, x axis in Fig. 1(f), (g), and (h)
- 19) n_e electron density, blue line in Fig. 1(f)
- 20) beta_e electron beta, blue line in Fig. 1(g)
- 21) v_perp electron velocity component perpendicular to the magnetic field, blue line in Fig. 1(h)
- 22) v_parallel electron velocity component parallel to the magnetic field, red line in Fig. 1(h)

fig2.cdf contains 6 variables

- 1) krho_e the magnitude of the wave vector multiplied by the electron gyroradius, x axis for all panels in Fig. 2
- 2) theta the angle between the wave vector and the magnetic field, y axis for all panels in Fig. 2
- 3) omega_A frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 2(a)
- 4) gamma_A growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 2(a)
- 5) omega_B frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 2(b)
- 6) gamma_B growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 2(b)

fig3.cdf contains 14 variables

- 1) krho_e the magnitude of the wave vector multiplied by the electron gyroradius, x axis for all panels in Fig. 3(a)-(d)
- 2) theta the angle between the wave vector and the magnetic field, y axis for all panels in Fig. 3(a)-(d)

- 3) omega_(a) frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 3(a)
- 4) gamma_(a) growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 3(a)
- 5) omega_(b) frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 3(b)
- 6) gamma_(b) growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 3(b)
- 7) omega_(c) frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 3(c)
- 8) gamma_(c) growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 3(c)
- 9) omega_(d) frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 3(d)
- 10) gamma_(d) growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 3(d)
- 11) krho_e_(e) the magnitude of the wave vector multiplied by the electron gyroradius, x axis for all panels in Fig. 3(e)
- 12) theta_(e) the angle between the wave vector and the magnetic field, y axis for all panels in Fig. 3(e)
- 13) omega_(e) frequency as a function of k and θ , normalized by ω_{LH} ; color contours in the left panel of Fig. 3(e)
- 14) gamma_(e) growth rate as a function of k and θ , normalized by ω_{LH} ; color contours in the right panel of Fig. 3(e)

fig4.cdf contains 20 variables

- 1) time_epoch epoch time, x axis in Fig. 4(a) and (d)
- 2) Em_mms2 M component of the electric field, measured by MMS2; blue line in Fig. 4(a)
- 3) Em_mms2 M component of the electric field, measured by MMS2; red line in Fig. 4(a)
- 4) freq_normalized frequency normalized by flh, x axis in Fig. (b) and (c)
- 5) k_rho_e measured wave vector multiplied by the electron gyroradius, blue asterisks in Fig. 4(b)
- 6) k rho e err errors in the wave vector measurements in Fig. 4(b)
- 7) freq theta 90 x axis for the magenta line in Fig. 4(b)
- 8) k_rho_e_theta_90 theoretically calculated wave vector with $\theta = 90^{\circ}$, magenta line in Fig. 4(b)
- 9) freq_theta_ $87_5 x$ axis for the red line in Fig. 4(b)
- 10) k_rho_e_theta_87_5 theoretically calculated wave vector with θ = 87.5°, red line in Fig. 4(b)
- 11) freq theta 87 x axis for the green line in Fig. 4(b)
- 12) k_rho_e_theta_87 theoretically calculated wave vector with $\theta = 87^{\circ}$, green line in Fig. 4(b)
- 13) freq_theta_86 x axis for the cyan line in Fig. 4(b)
- 14) k_rho_e_theta_86 theoretically calculated wave vector with θ = 86°, cyan line in Fig. 4(b)

- 15) theta_measured measured θ , blue asterisks in Fig. 4(c)
- 16) theta_measured_err errors in the θ measurements in Fig. 4(c)
- 17) freq_normalized_cal_0_6 theoretically calculated normalized frequency as a function of θ with $k\rho_e = 0.6$, red line in Fig. 4(c)
- 18) freq_normalized_cal_0_8 theoretically calculated normalized frequency as a function of θ with $k\rho_e = 0.8$, green line in Fig. 4(c)
- 19) theta_cal y axis in Fig. 4(c)
- 20) anomalous_term anomalous resistivity term, blue line in Fig. 4(d)