
1/21

FLAP User’s Guide

S. Zoletnik, M. Vécsei, Wigner RCP

zoletnik.sandor@wigner.mta.hu

Document version 1.62, 7 June, 2019

Contents
Introduction .. 3

Obtaining and installing FLAP .. 3

Configuration ... 3

Options and defaults ... 4

Data objects .. 4

Data sources ... 4

Coordinates in FLAP ... 5

Data storage and coordinates ... 5

Representation of coordinates .. 5

Converting coordinates .. 7

Explanations and examples .. 7

Data storage .. 8

Listing the content of FLAP storage .. 9

Save/Load ... 9

Data processing .. 9

Slicing .. 9

Examples .. 12

Data object conversions ... 13

real .. 13

imag .. 13

abs_value .. 13

error_value ... 13

Signal processing methods ... 13

detrend .. 14

filter_data ... 14

select ... 14

apsd .. 14

cpsd .. 14

2/21

ccf ... 15

Plotting ... 16

Writing a data source module .. 18

Using data source modules .. 20

3/21

Introduction
The Fusion Library of Analysis Programs (FLAP) is a Python framework to work with large

multi-dimensional data sets especially for turbulence data evaluation in fusion experiments.

Data are stored in data objects together with coordinates, data names and coordinates, thus the

built-in plotting functions create figures with correct axes. The data set can be sliced to reduce

dimensions and thus enable visualization of more than 2D data sets. FLAP is a modular

package: data are read through modules which register themselves to the FLAP framework.

This way data are read through a uniform interface by defining data source, experiment ID and

data name. Also coordinate conversion is done by functions in the data source modules.

Obtaining and installing FLAP
Flap is available on GitHub at https://github.com/fusion-flap. There are multiple

repositories. The core FLAP repository is named flap. Some data source packages are also

stored here with names flap_xxx. To use flap clone the flap repository and necessary data source

packages to your local machine to a directory in the Python path.

To test and see examples look at file tests/flap_tests.py in the flap repository. It contains

various functions to test and demonstrate different functionalities. These functions are called at

the end of the file where they can be one-by one switched on/off by changing True/False values.

The test programs print some information and the contents the FLAP storage into the console

and generate various plots with Matplotlib.

Configuration
FLAP can be adapted to the local environment using a configuration file. When flap is

imported the default configuration file “flap_defaults.cfg” is loaded from the working directory.

If the file is not found a warning is printed. A configuration file can also be read explicitly using

the flap.config.read() function.

The configuration file is a windows-style configuration file consisting of sections and

elements. Sections start with their name in []. The elements follow on individual lines. The

name of the element and the value is separated by =. Space can be used in both the section

names and element names. Lowercase and uppercase characters are different. Usually names

start with upper case but this is not a requirement. An example:

[PS]

 Resolution = 1e3

 Range = [1e3, 1e6]

[Module TESTDATA]

 PS/Resolution = 100

 Name = ‘This is a string’

In the above example section “PS” contains two elements. Section “Module TESTDATA”

refers to the TESTDATA data source module. The element PS/Resolution refers to the

resolution element in the PS section and enables overriding section settings with module

specific values.

https://github.com/fusion-flap

4/21

All elements in a section can be read with the flap.config.get_all_section() function. This

returns a dictionary with keys referring to element names. The values are converted using the

following rules:

 True and Yes is converted to boolean True.

 False and No is converted to boolean False.

 An element enclosed in single or double quotes is handled as string (without the

quotes).

 Elements which can be converted to int, float or complex are interpreted accordingly.

 An element enclosed in square brackets ([]) is interpreted as a list. List elements

should be separated by commas. Each list element is interpreted using the same rules

as one element of the section.

 If all the above interpretation attempt fails the element is handled as string.

Options and defaults
Standard flap functions (like flap.get_data(), flap.apsd, ...) take an “options” keyword

argument. A default options list is defined inside the routine, which contains all possible option

keys understood by the function and default values for them. If no options are passed to the

function these will take effect. The function might also be linked to a section in the

configuration file. Options read from this section override the default options.

The above section defaults might be overridden with data source related values. The data

object processed by the function might contain a data_source variable. If that is not None

configuration file elements in the section [Module <data_source>] are read and elements in the

form {<section>}<parameter> are searched for. (Here <section> and <paramter> are names of

a section and a parameter in it, respectively.) If such an element is found the respecting default

parameter in <section> is overwritten with the value on the Module section.

As all possible options of the function are known from the default options dictionary it is

allowed to abbreviate the option names in the function input options list up to the point where

it matches only one key. (In the configuration file full option keys should be used.) This also

means that any key in the default key list cannot be an abbreviation of another one. (E.g. ‘A’

and ‘A1’ are not allowed.)

This procedure is handled by the flap.config.merge_options() function.

Data objects
Data objects are flap.DataObject class variables. They contain a multi-dimensional data

array, an optional error array (symmetric or asymmetric), data name and unit and various

information elements (info, history) which at present are not fully developed. A data object can

optionally contain an exp_id variable describing the experiment ID from which the data

originates from and the data source module name. An arbitrary number of corodinates are

contained in the data object. This enables automatic plotting with proper axes and various

calibrations.

Data sources
FLAP can make use of various data read modules which can be dynamically added to the

package. Each package registers its data read and optional coordinate addition function in FLAP

so as data are read using a single FLAP function called get_data. The parameters are the data

5/21

source name, data name (interpreted by the data source module), experiment ID and additional

corodinate information so as data can be limited to certain ranges or resampled in channels,

time, etc. A single get_data call can read any number of measurement channels, there is an

extended wildcard interpretation method which enables e.g. using Signal[2-28] to read signals

from 2 to 28 into one data array. The module data read function can add as many coordinates

to the data array as it desires to be useful. (See information on FLAP corodinates below.)

Standard coordinates are Time, Signal name, Channel, etc. For information on writing a FLAP

data source please see the appropriate section below.

Coordinates in FLAP
In the FLAP program package coordinates are stored with the data. This document describes

the implementation of this feature.

Data storage and coordinates
Data are stored in an n-dimensional numpy array in the FLAP.DataObject class variable.

This n-dimensional space we call data sample space. Different dimensions of the array are

associated with primary coordinates, like sample number, channel number, or e.g. for simulated

data x, y. However, these primary coordinates are often not useful and we need to make plots

along physical coordinates. This can be handled by adding other coordinates to the DataObject.

Also during processing some coordinates might be turned to others. An example is calculating

power spectra. From a 2D measurement data with channel, time coordinates spectrum

calculation creates another 2D array with channel, frequency as coordinates.

In order to be more general by coordinate we will consider all information related to the data,

like measurement times, spatial locations, frequency, etc, especially what is variable for the

data array elements. However, this is not necessarily the case, a single scalar coordinate value

can be assigned to all elements as well. Coordinate information is not necessarily of numeric

type, e.g. channel name can also be considered as coordinate information. On the other hand,

other information (e.g. date of the measurement, measurement device configuration

information) are not considered as coordinate but stored in the info dictionary of DataObject.

Multiple coordinate information may be present in the DataObject but all of them assign a

value to all the array data elements. Storage of the coordinate information is designed by

considering that a coordinate mostly changes along one or a few dimensions of the data, in a

lot of cases coordinate values are equidistant but in special cases a coordinate value might

change along all dimensions of the data array. This way the simple cases are described with

minimal amount of data, while enabling even the most complicated case when data is

practicably doubled by adding a randomly varying coordinate. Data processing, plotting is

optimal if a coordinate changes along one dimension only.

Representation of coordinates
Coordinates have a name and unit, both described by a string. Standard names are Channel

name, Channel number, Signal name, Time, Sample, Device x, Device y, Device z, Device R,

Device Z, Device phi, Flux r, Flux Theta, Flux phi, Image x, Image y, Frequency, Time lag.

Any other names and units can be used, but it is preferred to use the above where possible. The

names are case sensitive as usual in Python. The type of the coordinate values is dependent on

the coordinate type. E.g. Sample, is integer, Time is either float or Decimal, Signal name is

string.

6/21

The following variables are defined in the Coordinate class, but not all of them are used in

all definitions: name, unit, mode, shape, step, start, values, value_index, value_ranges,

dimension_list. Unused variables are set to None.

Coordinates are not stored in the data matrix but each coordinate description is contained in

a FLAP.Coordinate class object. Such an object describes the coordinate values in a d-

dimensional rectangular coordinate sample space described by the shape variable what is a

tuple of sample numbers (s1,s2,...sd) in each dimension, similarly to shape in numpy arrays. If

shape has 0 elements it means that the coordinate value is constant and described by the ‘values’

and ‘value_ranges’ variables. The coordinate sample space is a subarray of the data sample

space. As an example consider measurements on a 2D spatial mesh. At each measurement point

a time signal is collected, thus the data sample space is 3D. If the 2D mesh is rotated relative

to physicsal x,y coordinates then these physical coordinates will change on the 2D mesh. This

way the coordinate sample space of x and y will be 2D, while the coordinate samples space for

the time coordinate will be 1D. The link between the coordinate sample space and the data

sample space is established by the dimension_list element of FLAP.Coordinate. This has

number of elements equal to the dimension of the coordinate sample space and each element

contains the index of the related data sample space.

The coordinate values are described in the coordinate sample space [0...s1-1, 0...s2-1, ...,

0...sd-1] in one of two ways.

 If FLAP.Coordinate.mode.equidistant is False samples of the coordinate value are given

on a regular or irregular grid in the coordinate sample space. The following cases are

considered:

o If value_index is None and the shape of the coordinate sample space is identical to the

corresponding subspace of the data sample space, then there is a one-to-one

correspondence between data samples and coordinate samples. The coordinate values

do not change along dimensions which are not in FLAP.Coordinate.dimension_list.

o If the two above shapes are different but value_index is None interpolation is done in

the directions with different number of elements assuming that first and last samples

match.

o If value_index is not None than coordinate samples are on an irregular grid. The

coordinate sample locations are given in the ‘value_index’ (d by Nsamp) array where

Nsamp is he number of coordinate samples. The coordinates in the sample space are

between 0 and si in the i-th dimension. The coordinate values are given in the 1D

‘values’ array which has Nsamp elements. To calculate the coordinate value for the data

array points a (multi-dimensional) interpolation is done between the sample

coordinate system and the data sample coordinates.

 If FLAP.Coordinate.mode.equidistant is True then the coordinate sample space is

assumed to be identical to the subspace of the data sample space selected by

‘dimension_list’. (FLAP.Coordinate.shape is not used.) The coordinates change linearly

in each dimension: c=b+s1x1+...sdxd , where b is the ‘start’ element of FLAP.Coordinate

and si is the step size in dimension i of the data sample space. The si values are stored in

the ‘step’ element which is a d long 1D array.

The coordinate values may have a range which is either symmetric or asymmetric around

the values. This can be considered either as an error of the coordinate or measurement range,

7/21

and it is described by a value_ranges variable. If FLAP.Coordinate.mode.range_symmetric is

True the range is symmetric around the coordinate values, otherwise there is a low and high

range. For the equidistant coordinate description ‘value_ranges’ is either a scalar or 2-element

array depending whether the range is symmetric or asymmetric. For the non-equidistant

coordinate description in the symmetric case ‘value_ranges’ has the same shape as ‘values’, for

the asymmteric case it is a dictionary with ‘low’ and ‘high’ keys. Each dictionary element has

the same shape as values.

The ‘coordinates’ variable of the FLAP.DataObject is a list of FLAP.Coordinate class

objects.

Converting coordinates
Each data source may name a function in the registration process in the add_coord_func

keyword variable. The add_coordinate() method of FLAP.DataObject gets coordinate name(s)

(string, or string list) and options dictionary. It calls the function registered for the given data

source with the data object, the new coordinate name(s) and options arguments. The function

should add the named coordinate(s) to the data object or raise a ValueError. The function knows

the experiment ID and other information about the data, therefore it should be possible to

calculate the new coordinate.

Explanations and examples
The above definition is complex but it has a reason. It contains all possibilities from the most

simple to the most complex. The coordinate descriptions are usually prepared in the data read

module and the coordinate values accessed by the data() method of the Coordinate class,

therefore the user should not take care of details of the coordinate description. Additionally, the

most often encountered cases are very simple, difficulty arises only e.g. when random points

are measured in time dependent flux coordinates at random time samples.

In the examples below we do not indicate the coordinate ranges, it can be simply added as

described above.

Some typical situations:

 Constant coordinate. This is useful where e.g. a measurement is done with all

measuring points in the Device z=const. coordinate. This constant can be entered in

the DataObject description to be used later when e.g. mapping is done from device

to flux coordinates.

shape = []

values = <z>

 Independent equally spaced coordinates along each dimension of the data array.

In this case a coordinate is defined for each dimension of the data array. The

definition of each coordinate contains a scalar start and a step value. The shape

variable is one number, only the number of elements of shape is used showing that

the coordinate description is 1D.

shape = 1

mode.equidistant = True

start = <start>

step = <step>

dimension_list = [0]

8/21

In the above example the coordinate changes along the first dimension of the data

array.

 Array of N temporal signals measured at N different points in the device

coordinate space. The data is stored in a 2D array, one dimension (0) is time, the

other is channel. In this case a ‘Time’ coordinate is described with equidistant

spacing as shown in the previous example. To describe the measurement spatial

coordinates additionally to ‘Time’ 3 coordinates are entered in the coordinates list of

the DataObject: ‘Device x’, ‘Device y’ and ‘Device z’. The description for the x

coordinate is:

shape = N

mode.equidistant = False

values = <array with N elements of coordinate values>

The other two coordinates are entered similarly. The time vector and x,y,z

coordinates of measuring channel i can be obtained from the d DataObject as:

time = d.coordinate(‘Time’,(...,i))

x = d.coordinate(‘Device x’,(i,0))

y = d.coordinate(‘Device y’,(i,0))

z = d.coordinate(‘Device z’,(i,0))

In this example it is also useful to additionally define a ‘Signal name’ and maybe a

‘Channel’ coordinate. Signal has normally string values (that is non-equidistant array,

values is a list of strings).

 Fast measurement signals at an array of spatial points mapped to a temporally

slowly variable flux coordinate system.

The data are stored in a 2D array, 1-st dimension is channel, second is time. The data

read routine enters the device coordinates into the DataObject. From this the flux

coordinate calculation method generates the flux coordinates of the measurement

points at a few time points (Nt) during the measurement time. 3 coordinates are added

to DataObject, the three flux coordinates. For each coordinate the calculated values

are put into a 1D array. The value_index will be a 2xNt array, at each time point the

channel number and the flux coordinate calculation time will be entered. The time is

normalized to (t-tstart)/(tend-tstart)*(Nt-1). The shape variable is (Nch, Nt), where Nch is

the number of channels, mode is set to 0 and dimension_list to [0,1]. As in the

channel direction the mapping is 1:1 from the coordinate sample coordinate and the

data matrix coordinate no interpolation will occur. In the time direction interpolation

will be done and the flux coordinates of each measurement channel will be

interpolated values between the sparsely known flux coordinates. The Time

coordinate is entered as an equidistant coordinate description.

Data storage
Data object variables can be passed between functions in a program as any other variable.

However, additionally to this FLAP contains a memory storage facility where data objects can

be stored under a name and experiment ID. This enables loading and processing various data

without the need of passing around a large number of variables. Data can be entered into the

storage by the flap.add_data_object function and retrieved by flap.get_data_object. It is also

9/21

possible to directly enter a data object from the flap.get_data function or all of the data

processing functions.

Listing the content of FLAP storage
The flap.list_data_objet can be used to list properties of the data objects in FLAP storage.

Data can be selected by name and exp_id (wildcards can be used). The data shape, properties

and properties of coordinates are listed.

Save/Load
Data objects can be saved to a file either from the FLAP data storage or from variables using

the flap.save function. It can take a list of data objects or other variables or a list of strings and

experiment IDs. In the latter case the data objects named by the strings and experiment IDs are

loaded from FLAP storage before saving them. The save routine uses the pickle Python module

to encode data. The file contains information whether data originates from FLAP storage or

from variables. When data are loaded using the flap.load function they are returned as list of

variables. If the data were saved from FLAP storage it can be entered there with the same naes

as well.

Data processing
The data processing routines are always available in two versions:

 A method of the flap.DataObject class. The method does not change the original data

object, rather returns the processed object.

 A flap.<xxx> function, where <xxx> is the same name as the respective method in

the flap.DataObject class. These functions read a data object from FLAP storage, call

the method on them and store the result either the same or new name.

The function always have the same arguments as the method plus a few additional ones:

 The first positional argument is the object name.

 An exp_id keyword argument sets the exp_id of the data object. Default is ‘*’,

therefore exp_id need not be set unless there are data objects with the same nae and

different exp_id in the storage.

 an output_name keyword sets the name of the resulting data object. If it is not set the

result will be stored under the same name as the input.

Each processing function/method returns the resulting data object, therefore operations can

be chained:

d.filter_data().apsd().plot()

Setting defaults for the processing method (see section “Options and Defaults”) the exact

parameters of the processing need not be written out in the most often used cases.

Slicing
Slicing means selecting certain elements in the data matrix and optionally taking their sum,

minimum, maximum, or doing some other operation on them. Description of the silicing

operation is based on coordinates. (Although originally it was foreseen to do slicing along data

dimensions, this is not considered useful now.)

Slicing is performed with the slice_data method. In the slicing argument it takes a dictionary

with keys referring to coordinates. The values describe how slicing is done. If the slicing

dictionary has multiple keys the slicing operations are done sequentially, except a special case,

10/21

see below. Summing is done after slicing. (If the slicing argument is omitted only summing is

done.) Summing again defined by a dictionary where keys refer to coordinate names.

If the slicing coordinate changes only along one dimension of the data array slicing is done

on the data along the associated dimension (see dimension_list). Other coordinates changing

along this dimension are adjusted. It has to be noted that coordinate changes might result in

changing from equidistant to non-equidistant type, which can cause more data in the data object.

If only one data remains in the sliced dimension that dimension is dropped from the data and

also coordinate dimension lists are adjusted correspondingly.

 If the slicing coordinate changes along multiple dimensions the situation is more complex

as shown in the 2D example below. Here x,y are the original coordinates in a 2D array and R

is some coordinate derived from them. The points are arranged in an x-y coordinate system.

The orange lines indicate constant R contours. The two solid lines indicate slicing in the R

coordinate, the red filled dots are the selected points. Selecting elements in the data in the range

of a coordinate which changes in multiple dimensions means that the selected sub-array

becomes non-rectangular. In this case the data along these dimensions will be flattened to 1D

before slicing and the slicing operation will be done on the flattened dimensions.

To illustrate this further let us consider a 2D image. A polar coordinate system with origin

in the center of the image is introduced and slicing is done in the radial coordinate. Selecting

one radial area results in a 1D array. The angle coordinate will change non-monotonically on

this. However, coordinates are corrected accordingly and it is still possible to plot as a function

e.g. of polar angle.

Two basic slice types are distinguished:

 Simple slice is an operation when a single interval or individual elements are selected

along a coordinate. This is described above.

 Multi-slice is an operation when multiple intervals are selected from the data. In this

case the dimensions along which the slicing coordinate changes are flattened as

described at simple slice and the intervals are selected. Two new dimensions are

added to the data matrix. Along one the interval number, along the other the data

index inside the intervals change. The interval data are distributed into these new

dimensions and the original flattened dimension is removed. With this procedure it

becomes possible to plot/sum data in individual intervals or across intervals.

x

y

11/21

Multi-slice is a complicated procedure and the above described scheme breaks down when

multi-slice is intended on two coordinates which change on (partly) common dimensions. E.g.

in the above described case of multi-slicing the data on an x-y grid to a r-phi grid poses

problems. After multi-slicing with r one gets the two dimensions along and accross the intervals.

However, the multi-slicing along phi would flatten these into one dimension and create new

intervals in phi. To avoid this multi-slicing along multiple coordinates with common

dimensions is done in one step and data are distributed into boxes arranged along each

dimension. In case of n such slicing operations n+1 dimensions are added with one dimension

where the interval number changes along each coordinate and a single dimension where the

sample index in one interval box changes. This case is not implemented yet.

After a multi-slice operation coordinates changing along the flattened dimensions are split

into two coordinates: “Rel. <coord> in int(<sl_coord>” and “Start <coord> in int(<sl_coord>”.

(Except for string coordinates where this is not possible and the original coordinate shape will

be changed.) Here <coord> is the name of the coordinate and <sl_coord> is the name off the

slicing coordinate. Also coordinates with names “Interval(<sl_coord>)” and

“Interval(<sl_coord> index)” are added storing the interval number (along one coordinate) and

the sample index in one interval.

If multi-slice operation results in different interval length, the dimension along the samples

in the intervals will be set to the longest. Where data is shorter in one interval np.NaN values

will be filled in case of float data and 0 for int. (There is no integer Not-a-number value in

Python.) In the coordinate matrix missing elements will be filled similarly to data.)

Slicing can be described with the following objects:

1. For simple slice:

a. A Python slice or range object, to select a sequence of regularly spaced elements.

b. A scalar value or a list of scalars to select random elements.

c. A numpy array to select random elements.

d. flap.DataObject without error and with data unit.name equal to the slicing

coordinate name.

e. flap.DataObject with the data unit.name not equal to the slicing coordinate, but one

of the coordinate names equal to the slicing coordinate and the coordinate has no

value_ranges.

f. flap.Intervals object with one interval.

In cases 1a-e the data elements with closest coordinates will be selected, while in case 1f all

elements in the interval will be selected. In case a string type slicing coordinate matching

between the slicing and the coordinate value is required instead of close match. (There is no

sense in close match for strings.) However, extended wildcards can also be used, e.g.

slicing=’{Signal name’:’TEST-*-3’} is a valid slicing expression.

2. For multi-slice:

a. flap.Intervals object with more than one interval.

b. flap.DataObject with data unit.name equal to the slicing coordinate. The error

values give the intervals.

c. flap.DataObject with the data unit.name not equal to the slicing coordinate

name but name of one coordinates equal to the slicing coordinate. The

value_ranges select the intervals.

12/21

The summing input argument to the slice_data method can be used for processing the sliced

data. This is also a dictionary with coordinate names as keys. Before processing the dimensions

where the summing coordinate changes will be flattened. The values of the dictionary can be

the following:

 ‘Sum’: Add all elements.

 ‘Mean’: Take the mean of all elements

 ‘Min’: Take the minimum of all elements

 ‘Max’: Take the maximum of all elements

As the result of the processing is a single value along the summing coordinate, this

dimension will be removed from the data. After processing the data the coordinate changes will

be done. In the case of ‘Sum’ and ‘Mean’ the mean of the coordinates of the summed data will

be taken, while in the case of ‘Min’ and ‘Max’ the coordinate of the minimum or maximum

value will be selected.

Examples
 As an example we read all signals from the TESTDATA module for a 1 ms piece and

store under name TESTDATA in flap storage:

 d=flap.get_data('TESTDATA',name='*', options={'Scaling':'Volt'},
 object_name='TESTDATA', coordinates={'Time':[0,0.001]})

This results in a 3D data object where signals are arranged in row and column and the third

dimension is time. ‘Time’, ‘Sample’, ‘Row’, ‘Column’ and ‘Signal name’ coordinates are

supplied by the data read routine. Then we add spatial coordinates:

 flap.add_coordinate('TESTDATA',
coordinates=['Device x','Device z','Device y'])

We can list the content of the data object using the flap.list_data_objects() call:

TESTDATA(exp_id:None) "Test data" shape:[15,10,1001]

 Coords:

 'Sample'[n.a.](Dims:2) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E+00

 'Time'[Second](Dims:2) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E-06

 'Signal name'[n.a.](Dims:0,1, Shape:15,10) [<R. symm.>] Val:TEST-1-1, TEST-1-2, TEST-1-3,

TEST-1-4, TEST-1-5, TEST-1-6, TEST-1-7, TEST-1-8, TEST-1-9, TEST-1-10, ...

 'Column'[n.a.](Dims:0, Shape:15) [<R. symm.>] Val. range: 1.000E+00 - 1.500E+01

 'Row'[n.a.](Dims:1, Shape:10) [<R. symm.>] Val:1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 'Device x'[cm](Dims:0,1, Shape:15,10) [<R. symm.>] Val. range: -1.112E+00 - 6.657E+00

 'Device z'[cm](Dims:0,1, Shape:15,10) [<R. symm.>] Val. range: 0.000E+00 - 5.587E+00

 'Device y'[cm](Dims:, Shape:) [<R. symm.>] Val: 0.000E+00

The above list shows that Sample and Time changes along dimension 2 (3-rd dimension),

Signal names change on the first tow dimensions, Column and Row changes on dimension 0

and 1, respectively. Device y does not change at all (emply dimension list) as the measurement

channels are in the y=0 plane. Device x and y both change on dimensions 0,1 as the

measurement matrix is inclined in the x, y plane.

A simple slice to select one signal looks like:

 flap.slice_data('TESTDATA', slicing={'Signal name': 'TEST-1-3'},

 output_name='TESTDATA_slice')

The result is a 1D array:
TESTDATA_slice(exp_id:None) "Test data" shape:[1001]

 Coords:

13/21

 'Sample'[n.a.](Dims:0) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E+00

 'Time'[Second](Dims:0) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E-06

 'Signal name'[n.a.](Dims:, Shape:1) [<R. symm.>] Val:TEST-1-3

 'Column'[n.a.](Dims:, Shape:1) [<R. symm.>] Val:1

 'Row'[n.a.](Dims:, Shape:1) [<R. symm.>] Val:3

 'Device x'[cm](Dims:, Shape:1) [<R. symm.>] Val:-2.472E-01

 'Device z'[cm](Dims:, Shape:1) [<R. symm.>] Val: 7.608E-01

 'Device y'[cm](Dims:, Shape:) [<R. symm.>] Val: 0.000E+00

Extended regular expressions can also be used. In the following expression 3 signals are

selected, resulting in a 3x1001 data array:
TESTDATA_slice(exp_id:None) "Test data" shape:[3,1001]

 Coords:

 'Sample'[n.a.](Dims:1) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E+00

 'Time'[Second](Dims:1) [<Equ.><R. symm.>] Start: 0.000E+00, Steps: 1.000E-06

 'Signal name'[n.a.](Dims:0, Shape:3) [<R. symm.>] Val:TEST-1-8, TEST-1-9, TEST-1-10

 'Column'[n.a.](Dims:0, Shape:3) [<R. symm.>] Val:1, 1, 1

 'Row'[n.a.](Dims:0, Shape:3) [<R. symm.>] Val:8, 9, 10

 'Device x'[cm](Dims:0, Shape:3) [<R. symm.>] Val:-8.652E-01, -9.889E-01, -1.112E+00

 'Device z'[cm](Dims:0, Shape:3) [<R. symm.>] Val: 2.663E+00, 3.043E+00, 3.424E+00

 'Device y'[cm](Dims:, Shape:) [<R. symm.>] Val: 0.000E+00

Data object conversions
The following methods of data object result in a modified object.

real
Returns a new data object with the data the real part of the original data. Coordinates and

other properties are not modified.

imag
Returns a new data object with the data the imaginary part of the original data. Coordinates

and other properties are not modified.

abs_value
Returns a new data object with the absolute value of the data. For complex data this is the

amplitude.

error_value
Returns a new data object where the data is a copy of the error of the original data object and

error is None.

Signal processing methods
Most signal processing methods/functions have a similar logic and interface. They operate

on one or more “signals” which change along one coordinate, e.g. time. However, they can

also be used to perform processing along any other coordinate, e.g. some spatial coordinate.

The processing of these methods can be limited to a set of intervals in a coordinate. Two

coordinates are distinguished. The processing coordinate is the one along which the

processing is done, the selection coordinate is in which the intervals are defined. The

common input arguments are the following:

 coordinate: name of a coordinate along which the processing is done.

 intervals: description of the intervals to which the operation is restricted. There are

multiple possibilities:

o Intervals is None. In this case no intervals are used, all data are processed.

o Intervals is a dictionary. In this case only one key is expected to be present

and the key is a coordinate name. The intervals are taken in this coordinate,

14/21

which is not necessarily the same as the coordinate argument. The value of

the dictionary is the interval description (see below).

o Intervals is neither None, nor dictionary. In this case the intervals are selected

along the processing coordinate and the intervals argument is the interval

description.

The interval description can be any of the following:

 List of two numbers: describes a single interval between these tow

coordinate values.

 flap.Intervals object. Can describe regular or irregular intervals.

 flap.DataObject. There are two cases similarly to slice_data. If the data

name equals the selection coordinate then the data and errors are used as

intervals. If the data name is different than the selection coordinate but one

of the coordinates in the data object is identical to the selection coordinate

then the coordinate values an value ranges are used as intervals.

 options: any other parameter for processing.

Signal processing methods are the following:

detrend
This method subtracts a trend from the data along a given coordinate. If the coordinate is

not set ‘Time’ is used.

filter_data
Filters the signals along a certain axis with one of Numpy’s filters. For defining the filter it

has a simplified interface capturing the important aspects.

select
Selects intervals from a signal either manually with the mouse or automatically based on

some events. The selection can be limited to a set of intervals as in all signal processing

methods. The intervals are saved in a data object. This can be used in other functions which use

intervals, e.g. most of the data evaluation methods and slice_data. With slice data conditional

averaging can be implemented

apsd
APSD stands for Auto Power Spectral Density. This method converts the processing

coordinate (default is Time) to “Frequency” or “Wavenumber”. The intervals argument is the

same as in the case of other signal processing methods, but it is used differently. Identical length

intervals with a given minimum number are placed into the processing intervals. APDS is

calculated in all intervals and the mean and statistical error is determined from them at each

frequency/wavenumber point.

cpsd
This method calculates complex cross-spectra or coherency (and crossphase) between all

signals in two data objects. It does not calculate cross-spectra in one object, to do this the second

(reference) data object can be omitted. It is similar to apsd as it converts a processing coordinate

to Frequency/Wavenumber. However, the number of dimensions of the resulting data object is

the sum of the dimension number of the two data objects minus 1.

15/21

ccf
This method calculates cross-covariance or correlation functions between all signals in two

data objects. It does not calculate correlations in one object, to do this the second (reference)

data object can be omitted. The number of dimensions of the resulting data object is the sum of

the dimension number of the two data objects minus 1. The correlation function lag range and

lag resolution can be set.

16/21

Plotting
FLAP can generate various plots from data objects in a simple way using the plot method of

flap.DataObject or the flap.plot function. A slicing and summing keyword argument allows to

call the slice_data function from within the plot call so as a plot can be made of a slice of the

data without the need to store the slice.

Graphics are created using the matplotlib package but a FLAP plot may consist of multiple

matplotlib plots. Each FLAP plot is identified by a flap.PlotID class variable returned by the

plot function/method. It is possible to set the actual plot ID to a previously created one and thus

add more data to an already existing plot.

The hierarchy and handling of graphics is the following:

 Matplotlib may use multiple “figures”, each figure is a separate window in the

computer.

 A figure may contain multiple subplots created by the Matplotlib subplot, GridSpec

and similar functions.

 When the FLAP plot function/method is called it uses the current subplot setting and

places its (possibly multiple) plots into the subplot area.

 The PlotID of the last plot is remembered by flap, the next plot will be overplotted

into the existing one. This is also true for multi-axis flap plots.

 The plot_id keyword can be used in plot to specify an existing plot ID where the new

one has to be overplotted. After the plot this plot ID becomes the current one.

 The current plot ID can be changed with the flap.set_plot function as well.

 If the plot destination area is changed by the Matplotlib subplot function overlapping

plots will be erased. If the new area agrees with an existing one no erase will happen.

This latter behaviour will be changed in new versions of Matplotlib.

 If the plot type at an existing place is different from the requested new plot and error

message will be raised. Setting the ‘Clear’ option in the plot call to True erases the

previous plot.

FLAP uses the coordinate information in the data objects to create plots. The axes of the

plots can be specified as axes=[ax1,ax2,...] where the list elements can be the following:

 The string ‘__Data__’ means the data in the data object.

 Any other string refers to a coordinate in the data object.

 A data object means the data on taht data object is used. This enables plotting as a

function of another data object.

 A constant means constant value for that coordinate.

The FLAP plot function/method has default plot types and plot axes for various types of data

objects, therefore in many cases it is enough to use d.plot() to prepare a reasonable plot of the

data object. If no axes are specified the first few coordinates in the data object and the data are

used as default. E.g. for simple x-y plot the first coordinate and data are the default axes. When

overplotting the default axes become the ones in the plot. This way if a signal is plotted as a

function off sample number instead of time the next signal will be automatically overplotted as

a function of sample. This also means that when overplotting a data object onto an existing plot

where the data_name of the new data object does not match any axis on the plot all axes should

be explicitly specified and forced (see below).

17/21

Axes and units are automatically placed on the plots. The language of the axes can be set in

the call to plot in the ‘Language’ option. When overplotting the following rules apply for the

axis title and unit:

 Axes of the old and new plot are considered to be identical when both the names and

units are identical.

 If and old and new axis is not identical an error message is raised unless the ‘Force

axes’ option is set to True.

 When forced the following rules apply:

o If names or units are identical they will be preserved.

o If one of the names or units is not known (‘’ or None) the other will be used

o If none of the above applies the axis will have no name and/or unit.

The link to the data from which the plots were created is saved in plotID and this in following

versions on FLAP it should be possible to regenerate the plot, erase one of the data objects from it

and possibly increase plot resolution when the ‘All points’ option is not set.

18/21

Writing a data source module
A data source module differs from a normal Python module in the in that it can provide a

few functions for the FLAP framework. These are the following:

In order to implement data read into FLAP the module should provide a function with the

following input arguments:

def get_data(exp_id=None,

 data_name=None,

 no_data=False,

 options=None,

 coordinates=None)

The name of the function is irrelavant. The input arguments are the following:

exp_id:

The experiment ID that is shot number or any other numeric or string describing the

particular experiment from which the data is requested.

data_name:

Name of the data requested. This is a string or list of strings. The strings may contain Unix-

style wildcards like CH[1-8] but also an extended wildcards can be used like CH[1-23]. This

allows reading an arbitrary number and configuration of measurement channels.

no_data:

If False then no data should be returned only the coordinates filled.

options:

A dictionary of options. No make use of options in the configuration file and abbreviation

of options follow the description below.

coordinates:

This list may contain flap.Coordinate objects which can precisely define the coordinate

ranges from which the data should be read through the “values” and “value_ranges” in the

flap.Coordinate object. As a simplification the “c_range” element of the flap.Coordinate object

gives a simple range.

The return value should be a flap.DataObject. The arguments are described in the

data_object.py function of the flap package. Any number of coordinates can be added to the

flap.DataObject.coordinates list.

To make use of options in the configuration file and option abbreviation the following should

be provided in the data read function:

 A dictionary should be created with all possible options and their default values.

 The flap.config.merge_options() function should be called the following way:

_options = flap.config.merge_options(default_options,

 options,

 data_source='DATASOURCE')

In the above call DATASOURCE should be repalced with the data source name used in

registering the data read function (see below). default_options is the default options dictionary

and options is the options dictionary received by the get data function. In the above example

the merge_options function reads entries from the configuration file section ‘Module

19/21

DATASOURCE’ and all the entries which has no {xxx} at their beginning are added (or

replaced) to the options list received in the default options argument. This means function

defaults are replaced by configuration defaults. Finally the dictionary keys in the options

arguments are checked whether they can be interpreted as abbreviation of only one option and

if is fulfilled their value is entered into that options. This overwrites both function and

configuration file defaults with input options. The resulting options dictionary is returned by

the function. It should be named differently then the options input to the data read function to

avoid overwriting the input argument. The _options dictionary should be used in the data read

function after merging all options. This procedure is not compulsory but it should be done if

configuration file options and option abbreviations are to be used.

An optional function can also be provided by the module if it is capable of calculating

additional coordinates to the ones returned in the data read function. For e.g. some derived

spatial coordinates or flux coordinates can be added to an already existing data object with the

following function:

def add_coordinate(data_object,

 coordinates=None,

 exp_id=None,

 options=None)

This function takes a flap.DataObject and adds new coordinates named in the string list

“coordinates”. The arguments:

data_object:

The input data object.

coordinates:

A list of strings describing the requested new coordinates. In response the function should

add these coordinates to the data object or raise an error.

exp_id:

If for the coordinate calculation another experiment ID should be used this argument is set

and used instead of the exp_id in the data obejct. This can be the situation e.g. when no

calibration data is available for the original experiment.

options:

A dictionary of options.

To make use of these tow functions in the flap environment the module should register them.

The module should define a function named “register” the following way:

def register():

 flap.register_data_source('DATA_SOURCE_NAME',

 get_data_func=get_data,

 add_coord_func=add_coordinate)

The “DATA_SOURCE_NAME” string should be replaced by the desired data source name

in FLAP. The two functions in the get_data_func and add_coord_func are the two functions

described above. This register function will be called when the module is used. (See in the next

section.)

20/21

Using data source modules
To make use of a data source module it should be first imported in the user program as any

other module. The data read and coordinate add functions are integrated into FLAP by calling

the register function of the. In the example below we will use module name testdata and data

source name TESTDATA.

import testdata

testdata.register()

print(flap.list_data_sources())

d=flap.get_data(‘TESTDATA',

 exp_id=12345,

 name=['Signal-1',’Signal-[20-23]’],

 options={'Scaling':'Volt'},\

 coordinates={'Time': [1,3]},

 object_name='TESTDATA_SIGNALS')

The above example code imports the testdata module and registers it in FLAP. the

flap.list_data_sources function lists all actually registered data sources. The flap.get_data

function is the general data read interface in FLAP. In the example it reads from the

TESTDATA data source the data named Signal-1, Signal-20, ... Signal-23 in the tie interval 1-

3s. The resulting data object will be stored in FLAP storage under name

“TESTDATA_SIGNALS” ald also returned by the function. In the options it is requested to

scale the data to volts.

When the flap.get_data function is called it first determines whether the requested data

source is registered. If it is then the data read function of the module is called with the exp_id,

name, options, coordinates arguments. If the coordinates argument is a dictionary as in the

above example then it is converted to a flap.Coordinate object and the range ([1,3] in the

example) is entered in the c_range field of it. This coordinate is passed to the module data rad

function. If in the coordinates arguments already flap.Coordinate objects are listed than they

are passed without modification. When the module data rad function returns the data object it

is stored in FLAP storage if an object name is named. The shape, contents, coordinates of the

data object is fully determined by the module data read function.

In the simplest form new coordinates can be requested for data object d the following

way:

d.add_coordinate(coordinates=[‘Device x’,’Device y’])

This call requests the module which created the d data object to add new coordinates named

Device x and Device y. The add_coordinate method also has a data_source, exp_id argument

so as different data source or experiment can be used for coordinate calculation than the ones

used for reading the data. This is useful e.g. when a separate flux coordinate mapping module

is defined. It is also possible to add coordinates directly to a data object in FLAP storage:

21/21

flap.add_coordinate('TESTDATA_SIGNALS',

 coordinates=['Device x','Device y’])

