Instructions for recreating the figures of ?Hyperdiffusion of dust particles in a turbulent tokamak plasma?, PoP 2021 Fig. 1: all data in fig1.txt Fig. 2: Data of background plasma in mesh.h5 and fields3D_00000.h5 Data for trajectory (R,Z,phi) in C_T040_n05e+18_rd5_NKU0_theta30_t3.h5 (first trajectory of 300) Fig. 3: Data (Nd,Ted,Md) in C_T040_n05e+18_rd5_NKU0_theta30_t3.h5 (first trajectory of 300) rho_s=1.02*sqrt(2*T0)/(B0.*1e4); %m cs0=9.79e3*sqrt(T0); t=(1:size(R,2)).*dt.*rho_s/cs0; Fig. 4: Data in fig4.txt Fig. 5a: mesh in mesh.h5 Data for trajectories (R,Z,phi) in C_T040_n05e+18_rd*_NKU0_theta30_t3.h5 Fig. 5b: t=(1:size(R,2)).*dt; Deltar^2=((R-nanmean(R,1)).^2+(Z-nanmean(Z,1)).^2+(R.*phi-nanmean(R.*phi,1)).^2); color=mean(Chi,1); black solid lines y=(t/t0)^gamma black dashed lines y=(t/t01)^gamma1 Fig. 6: Data for trajectories (R,Z,phi) in C_T040_n05e+18_rd*_NKU0_theta30_t3.h5 dr=sqrt((R-nanmean(R,1)).^2+(Z-nanmean(Z,1)).^2+(R.*phi-nanmean(R.*phi,1)).^2); t=(1:size(d,2)).*dt; L=sqrt((R-repmat(R(:,1),1,size(R,2))).^2+(Z-repmat(Z(:,1),1,size(Z,2))).^2+(R.*phi-repmat(R(:,1).*phi(:,1),1,size(R,2))).^2); y=mean(dr,1)/mean(L,1); Fig. 7: Data (gamma, t0) in C_T040*_theta30_t3.h5 errorbars are dgamma and dt0 tau_c=1.9788e-05; mi=2*1.67e-27;%kg rho_d=2267; %graphite kg/m^3 RD=a.*rho_s; KU=5.5037/(1+NKU); ST=1./(mi*n0*cs0*sqrt(1.5).*5).*rho_d.*4/3.*RD./tau_c; Circles are data from C_T040_n05e+18_rd*_NKU0_theta30_t3.h5 Trinagles are data from C_T040_n0*_rd5_NKU0_theta30_t3.h5 Squares are data from C_T040_n05e+18_rd5_NKU*_theta30_t3.h5 Fig. 8: Same as fig. 7, but using gamma1 and t01, dgamma1 dt01 Fig. 9: Data for trajectories (R,Z,phi) in C_T040_n05e+18_rd*_NKU0_theta30_t3.h5 (R1,Z1,phi1) = (R,Z,phi) form C_T040_n05e+18_rd*_NKUInf_theta30_t3.h5 l=min([length(R1),size(R,2)]); d1=((mean(R(:,1:l),1)-R1(1:l)).^2+(mean(Z(:,1:l),1)-Z1(1:l)).^2+(mean(R(:,1:l),1).*mean(phi(:,1:l),1)-R1(1:l).*phi1(1:l)).^2); t=(1:size(d,2)).*dt;