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1 Abstract

The toroidal field (TF) coil of a tokamak magnetic fusion reactor will experience significant steady-
state structural loads due to the Lorentz force. The ability to predict these loads is essential
for the design and analysis of such reactors. While a fully 3D Finite Element Analysis (FEA)
is required to validate a detailed design, a 0D system design code ony requires an approximately
correct answer. These systems codes are meant to rapidly iterate through the space of possible
designs, rather than produce highly accurate results of a single design. Here, we present a simple
model of the stresses and strains within the TF coil at the inboard midplane of the tokamak,
resolved in the radial direction. No out-of-plane forces from the poloidal field are considered. This
model assumes axisymmetry and symmetry (long) in the axial direction. The TF coil is assumed
to be constructed of any number of layers, within which materials properties are uniform. The 1D
radially-resolved problem is reduced to a 0D calculation with the use of a Green’s Function solution
to Lamé cylindrical stress equations incorporating a general body force in the radial direction.
Poisson’s Ratio effects are included. Boundary conditions between layers are reduced to matrix
multiplication. Boundary conditions at the inboard and outboard side are likewise reduced to a
single 3 × 3 matrix inversion or Gaussian elimination. The axial force (tension) is assumed to be
known. The axial strain is assumed to be constant (an “extended plane strain problem”) and is
found as a result of the matrix inversion. Transverse-isotropic materials can be considered. The
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inner boundary condition can assume either a finite-radius open bore, or a plugged bore (rbore = 0).
An inner set of layers may be assumed to be frictionally decoupled from the outer layers, in that
they may be considered to carry no axial force.

2 Introduction

The toroidal field (TF) coils of a tokamak will experience significant steady-state structural loads.
This is due to the high magnetic fields required of these devices, which at the high end could reach
above 25 Tesla,[1] corresponding to a magnetic pressure of > 200 MPa. Clearly, it is essential to
predict and understand these magnetic loads.

The internal stresses and strains in the TF coil can be computed to very high accuracy using
Finite Element Analysis (FEA) tools such as Ansys and COMSOL. However, before a tokamak
design reaches the level of detail that requires FEA, it must first be arrived-at by approximate
methods. The codes that use these approximate methods to evaluate and iterate over a large
number of design points are called systems codes. There are many such codes in the literature,
such as CCFE’s PROCESS,[2, 3] Tokamak Energy’s TESC,[4, 5] General Atomics’s GASC,[6, 7]
and ORNL’s Unnamed FESS Systems code.[8, 9] For a very tutorial approach, see papers from J.
Freidberg’s group.[10, 11, 12]

Systems codes require approximate models, as they must run quickly but capture the essential
interaction between the major systems of the tokamak. Because of this, explicit analyses are
preferred over implicit. FEA takes too long. Some examples of very simple TF coil load models
include: The magnetic virial theorem (distinct from the magnetic plasma virial theorem) which
relates the mass of structural material to the stored magnetic energy,[13] and lumped-sum TF coil
models.[10]

We present a more sophisticated model which radially resolves the stress and strain distribution
within any number of layers. We consider the inboard midplane of the TF coil, as this is likely
representative of the highest stresses in the coil. We assume that all materials are elastic. We assume
that the behavior in the inboard midplane is the same of that of the same plane, projected infinitely
into the axial direction (∂z = 0). See Figure 1. Assuming the geometry and materials properties
do not change with the axial coordinate is called the “generalized plane strain problem.”[14] We
neglect any shear, making this the further simplified “extended plane strain problem,” in which
axial strain is constant. We assume the problem is axisymmetric (∂θ = 0). We assume that there
is some prescribed axial force/tension, but that all volumetric force density (body force) is in the
radial direction. Finally, we assume that the material is isotropic or transverse-isotropic.

The solution to this model progresses in the following way:

� Section 3: The relationships between stress, strain, and displacement are established (the
Lamé thick cylinder equations)

� Section 4: A solution to these equations is found assuming that materials properties are
uniform and there is no body force
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Figure 1: The assumed geometry of our problem: The materials properties, geometry, and
stresses/strains at the inboard midplane of the TF coil are assumed to be uniform in the axial
direction and axisymmetric.

� Section 5: A Green’s function approach generalizes the uniform-layer solution to include fully
general radial body forces

� Section 6: Boundary conditions between layers of uniform material properites are specified

� Section 7: The solution for all radii is posed in terms of two degrees of freedom related to the
outermost edge and the axial strain

� Section 8: The axial force / tension of this solution is found

� Section 9: Boundary conditions at the inner and outer surface are written, as is the condition
that the axial force/tension is known

� Section 10 The solution to these boundary conditions is produced via a single 3 × 3 matrix
inversion or Gaussian elimination

Additional items are discussed:

� Section 11: The model is generalized from isotropic to transverse-isotropic materials

� Section 12: The functional form of f(r), the radial force density profile, is discussed, and
analytic forms of relative integrals are given.

� Section 13: Computing bulk, effective materials properties from small-scale mixtures of het-
erogeneous materials is discussed. This is called the “smearing” of materials properties, and
is used to compute, for example, materials properties of axial filaments embedded in a bulk
matrix.

� Section 14: The model is extended to allow that an inner section of layers do not contribute
to the axial force Fz, as though a central solenoid has been frictionally decoupled from the
TF while being bucked and wedged.
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� Section 15: A MATLAB script is given which implements the model

The present algorithm incorporates and extends an algorithm by S. Kahn for the PROCESS
code.[15, 16] The present algorithm uses an inner boundary condition for which the plugged case is
the limiting behavior of the open-bore case for rbore → 0. The present algorithm requires a much
smaller matrix inversion / Gaussian elimination, 3 × 3 for any number of layers, as opposed to
the prior algorithm’s 2N × 2N where N is the number of layers. This algorithm therefore takes
O(N) compute time rather than O(N3), making it more applicable to many-layered or graded coils.
The present model leaves the dependence on the radial body force as a fully general f(r) integral,
allowing specialization to the prior model’s Lorentz force or considering general forces.

This model does not consider out-of-plane forces produced on the TF coil by the poloidal field
(PF) coils. These forces are now known to be significant.

3 Stress, strain, and displacement

In cylindrical coordinates, the normal strains εq ≡ εqq have the following relationship to the ax-
isymmetric displacement ~u = ur r̂ + uz ẑ:

εr = ∂rur (1)

εθ =
1

r
ur (2)

εz = ∂zuz (3)

The following sections will consider the simpler case of isotropic materials. For the more complex
transverse-isotropic case, see Section 11

The strains are computed from the normal stresses σq ≡ σqq using the compliance form of
Hooke’s Law, which for an isotropic material is:

εr =
1

E
(σr − ν(σθ + σz)) (4)

εθ =
1

E
(σθ − ν(σr + σz)) (5)

εz =
1

E
(σz − ν(σr + σθ)) (6)

where E is the Young’s modulus and ν is the Poisson’s ratio of the material. Likely values of E
are in the tens to hundreds of gigapascals (1010 − 1011 GPa). Values of ν are between 0 and 1/2,
often around ν ∼ 0.3.
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These equations can be inverted into the stiffness form of Hooke’s Law:

σr = Ē(εr + ν̄(εθ + εz)) (7)

σθ = Ē(εθ + ν̄(εr + εz)) (8)

σz = Ē(εz + ν̄(εr + εθ)) (9)

where Ē and ν̄ are the effective Young’s modulus and Poisson’s ratio holding strain rather than
stress cross-terms constant [EDIT: Do these have names?]:

Ē ≡ E 1− ν
1− ν − 2ν2

(10)

ν̄ ≡ ν

1− ν
(11)

Finally, these quantities may be related to each other via a force balance equilibrium on a
differential volume dV = r × dr × dθ × dz:

∂V Fr = 0 = f − ∂rσr −
1

r
σr +

1

r
σθ (12)

where f is the volumetric force density in the radial direction, also called “body force,” for example
the Lorentz force (~j × ~B) · r̂.

4 Uniform-layer, no-body-force solution

If Ē and ν̄ are constant, we are considering a layer of uniform material. The equilibrium equation
Equation 12 is therefore simplified, and plugging in the stresses (Equations 7 and 8) then the strains
(Equations 1 and 2) gives:

0 =
1

Ē
f − ∂2

ru−
1

r
∂ru+

1

r2
u (13)

If f = 0 we are considering the case that this layer has no body force.

0 = −∂2
ru−

1

r
∂ru+

1

r2
u (14)

where u ≡ ur, the only displacement we are worried about.
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The solution to this equation has the form

u(r) = Ar +B
1

r
(15)

where A,B are free parameters to be determined by boundary conditions, the so-called Lamé
parameters. This solution can be plugged into Equations 7, 8, 1, and 2 to give the radial and
azimuthal stress:

σr(r) = Ē[A(1 + ν̄)−B(1− ν̄)
1

r2
+ ν̄εz] (16)

σθ(r) = Ē[A(1 + ν̄) +B(1− ν̄)
1

r2
+ ν̄εz] (17)

In engineering circles, these equations are also used to model thick cylindrical pressure vessels,
where they are called the Lamé cylindrical stress equations. They are used with the boundary
condition that σr(rin) is equal to the pressure on the inside of the vessel Pin, and that σr(rout) is
equal to the pressure on the inside of the vessel Pout.

Note also that the plugged case, with rin = 0, has the boundary condition that u(0) = 0, the
radial displacement at the origin is zero. Plugging this into Equation 15, we get that B = 0.
Plugging this into Equations 16 and 17, we get that σr = σθ = Pout is constant, the expected
hydrostatic-like case.

5 Body forces within layers

If the uniform layer under consideration is allowed to experience a general radial body force f(r),
Equation 13 once again applies rather than Equation 14. The former is reproduced here:

0 =
1

Ē
f − ∂2

ru−
1

r
∂ru+

1

r2
u

Note that this is an equation with homogeneous and inhomogeneous terms, and is therefore
susceptible to a Green’s Function approach. The result is that, rather than being constant within
the layers, A(r) and B(r) will be functions of r:

A(r) = Aout − 1

2Ē

∫ rout

r

dr × f(r) (18)

B(r) = Bout +
1

2Ē

∫ rout

r

dr × r2f(r) (19)

where Aout ≡ A(rout) and Bout ≡ B(rout). For the body forces of interest, these integrals are
analytically solvable. Two useful cases, that of a uniform force and a Lorentz force caused by
current density, are given in Section 12.
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Figure 2: For a uniform layer that has inner radius rin and outer radius rout, A
in, Bin are the Lamé

parameters (see Equation 15) at the inner radius and Aout, Bout are the Lamé parameters at the
outer radius. The matrix MInt transforms the outer parameters into the inner parameters.

One might expect the functional forms of σr and σθ to disagree with the form found for a force-
free layer, Equations 16 and 17 because of the ∂rA, ∂rB terms that now exist in ∂ru. However, these
terms cancel and Equations 16 and 17 are fortuitously still true with A,B replaced with A(r), B(r):

σr(r) = Ē[A(r)(1 + ν̄)−B(r)(1− ν̄)
1

r2
+ ν̄εz] (20)

σθ(r) = Ē[A(r)(1 + ν̄) +B(r)(1− ν̄)
1

r2
+ ν̄εz] (21)

As we will see in Section 6, it will become extremely useful to define a matrix which transforms
the outer Lamé parameters into the inner ones. To cast Equations 18 and 19 into a matrix that
relates these two sets of parameters, we require so-called augmented or homogeneous coordinates,
as is commonly used in Affine transformations:AinBin

1

 =

1 0 − 1
2Ē

∫ rout

rin
dr × f(r)

0 1 1
2Ē

∫ rout

rin
dr × r2f(r)

0 0 1

AoutBout

1

 (22)

However, as we will see in Section 10, the matrix will serve us best if the solution vector is
actually actually augmented by two additional coordinates, one of which is the constant uniform
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Figure 3: For two uniform layers, layer i−1 and layer i separated by radius ri, boundary conditions
relate the Lamé parameters at the outer edge of layer i−1 to those at the inner edge of layer i. The
matrix MExt,i transforms the inner parameters of layer i into the outer parameters of layer i− 1.

axial strain εz:
Ain

Bin

εz
1

 = MInt


Aout

Bout

εz
1

 =


1 0 0 − 1

2Ē

∫ rout

rin
dr × f(r)

0 1 0 1
2Ē

∫ rout

rin
dr × r2f(r)

0 0 1 0
0 0 0 1



Aout

Bout

εz
1

 (23)

Where here we have defined the matrix MInt as the “internal transformation matrix,” the matrix
that transforms the Lamé parameters at the outer edge of the layer into those parameters at the
inner edge of the layer.

6 Boundary conditions between layers

Suppose layer i is that layer which exists between radii ri and ri+1.

The boundary conditions between two layers are:

ui−1(ri) = ui(ri) (24)

continuity of displacement and
σr,i−1(ri) = σr,i(ri) (25)

continuity of radial stress.
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Expanding these boundary conditions, they become

Aouti−1ri +Bouti−1

1

ri
= Aini ri +Bini

1

ri
(26)

and

Ēi−1[Aouti−1(1 + ν̄i−1)−Bouti−1(1− ν̄i−1)
1

r2
i

+ ν̄i−1εz] = Ēi[A
in
i (1 + ν̄i)−Bini (1− ν̄i)

1

r2
i

+ ν̄iεz] (27)

These boundary conditions can be rearranged to provide Aouti−1, B
out
i−1 in terms of Aini , B

in
i :

Aouti−1 = Aini
1

2
[
Ēi
Ēi−1

(1+ ν̄i)+1− ν̄i−1]+Bini
1

r2
i

1

2
[1− ν̄i−1−

Ēi
Ēi−1

(1− ν̄i)]+εz
1

2
[
Ēi
Ēi−1

ν̄i− ν̄i−1] (28)

Bouti−1 = Aini r
2
i

(
1−1

2
[
Ēi
Ēi−1

(1+ν̄i)+1−ν̄i−1]
)
+Bini

(
1−1

2
[1−ν̄i−1−

Ēi
Ēi−1

(1−ν̄i)]
)
−εzr2

i

1

2
[
Ēi
Ēi−1

ν̄i−ν̄i−1]

(29)

As with MInt in Section 5, we will be best served by a matrix to transform the inner parameter
vector from layer i to the outer parameter vector from layer i− 1:


Aouti−1

Bouti−1

εz
1

 = MExt,i


Aini
Bini
εz
1

 =


M1,1 M1,2 M1,3 0
M2,1 M2,2 M2,3 0

0 0 1 0
0 0 0 1



Aini
Bini
εz
1

 (30)

M1,1 =
1

2
[
Ēi
Ēi−1

(1 + ν̄i) + 1− ν̄i−1] (31)

M1,2 =
1

r2
i

1

2
[1− ν̄i−1 −

Ēi
Ēi−1

(1− ν̄i)] (32)

M1,3 =
1

2
[
Ēi
Ēi−1

ν̄i − ν̄i−1] (33)

M2,1 = r2
i (1−M1,1) (34)

M2,2 = 1− r2
iM1,2 (35)

M2,3 = −r2
iM1,3 (36)

Where here we have defined the matrix MExt as the “external transformation matrix,” the ma-
trix that transforms the Lamé parameters at the inner edge of the outer layer into those parameters
at the outer edge of the inner layer.
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Figure 4: By multiplying successive matrices, one may produce a 4 × 4 matrix which transforms
the outermost Lamé parameters into the Lamé parameters at any layer.

7 Specify solution for all radii if outer edge parameters are
known

Let us now specify the following Lamé parameter vector notation:

~Aji =


Aji
Bji
εz
1

 (37)

where i is the layer index from 1 to N and j is either in for the innermost edge of that layer or out
for the outermost edge of that layer.

In Section 5 we defined matrix MInt,i such that

~Aini = MInt,i
~Aouti (38)
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In Section 6 we defined matrix MExt,i such that

~Aouti−1 = MExt,i
~Aini (39)

By successively multiplying these matrices, one may obtain a matrix which transforms ~AoutN into
the Lamé parameter vector at any position:

~Aini = MTot,i
~AoutN =

N−1∏
j=i

[MInt,jMExt,j+1]MInt,N
~AoutN (40)

Thus, if the Lamé parameters at the outer edge AoutN , BoutN are known, and the axial strain εz
is known, the displacement, strain, and stress can be found at every radius. The procedure follows
thus:

� Determine all internal transfer matrices MInt,i from the body forces f(r) using Equation 23

� Determine all external transfer matrices MExt,i from the stiffness form of the Young’s moduli
Ē (Equation 10), Poisson’s ratios ν̄ (Equation 11), and the axial stress εz using Equations 30
- 36

� Determine all total transfer matrices MTot,i from Equation 40

� Determine all Lamé parameter vectors from ~AoutN and MTot,i using Equation 40

� Determine radially resolved Lamé parameters A(r), B(r) from Equations 18 and 19

� Determine the radially resolved displacement u(r) from Equation 15, radial stress σr(r) from
Equation 20, and azimuthal stress σθ from Equation 21

All that is left is to determine the final unknown parameters, the Lamé parameters at the outer
edge AoutN , BoutN and the axial strain εz.

8 Axial force / tension

This section computes the axial force or tension, Fz, of the solution found in Section 7. That
solution has axial strain εz as an input parameter. If instead Fz is a known input parameter and
εz is unknown, the matrix inversion solution in Section 10 must be used.

The axial force / tension is the areal integral of the axial stress

Fz =

∫
dA× σz = 2π

∫ rN+1

r1

dr × rσz(r) (41)

As per Equation 9, this has two parts: A stiffness term proportional to Ē and a Poisson term
proportional to ν̄:

Fz = Fz,Ē + Fz,ν̄ (42)
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The stiffness term is trivially calculable:

Fz,Ē = εz

∫
dA× Ē = εz〈ĒA〉 = εzπ

N∑
i=1

Ēi(r
2
i+1 − r2

i ) (43)

The Poisson term can be fortuitously simplified via integration by parts, and is here reproduced
alongside a few of the non-obvious steps:

Fz,ν̄ = 2π

∫
dr × rĒν̄(εr + εθ) = 2π

N∑
i=1

Ēiν̄i[ri+1u(i+ 1)− riu(ri)] (44)

Fz,ν̄ = 2π
[
ĒN ν̄NrN+1u(rN+1)− Ē1ν̄1r1u(r1) +

N∑
i=2

(Ēi−1ν̄i−1 − Ēiν̄i)riu(ri)
]

(45)

Fz,ν̄ as a function of the outermost Lamé parameters is best expressed in inner product form:

Fz,ν̄ = 2π
[
ĒN ν̄N

(
r2
N+1 1 0 0

)
~AoutN − Ē1ν̄1

(
r2
1 1 0 0

)
MTot,1

~AoutN

+

N∑
i=2

(Ēi−1ν̄i−1 − Ēiν̄i)
(
r2
i 1 0 0

)
MTot,i

~AoutN

] (46)

where a row vector to the left of a column vector denotes an inner product, for example(
r2 1 0 0

)
~A = Ar2 +B (47)

9 Global boundary conditions and axial force constraint

As a result of Sections 7 and 8, we now have all displacements, stresses, and strains as a function of
the outermost Lamé parameters AoutN , BoutN and axial strain εz. We wish to know these parameters
as we subject the problem to inner and outer edge boundary condition and the constraint that the
axial force Fz is a known value.

9.1 Outer boundary condition

The outer edge of the outermost layer is under no radial stress:

σr(rN+1) = 0 (48)

This boundary condition is a condition on the outermost Lamé parameters AoutN , BoutN and the
axial strain εz which is best expressed in inner product form:(

(1 + ν̄N )r2
N+1 −1 + ν̄N ν̄Nr

2
N+1 0

)
~AoutN = 0 (49)
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9.2 Inner boundary condition

There are two cases for the inner boundary condition, the plugged bore case, in which material
extends all the way in to the axis of symmetry and r1 = 0, and the open-bore case, in which r1 > 0.

For the open-bore case, the boundary condition at the inner edge of the innermost layer is the
same as the outer edge of the outermost layer, that it is under no radial stress:

σr(r1) = 0 (50)

This boundary condition can again be written as a condition on the outermost Lamé parameters
AoutN , BoutN and the axial strain εz which is best expressed in inner product form:(

(1 + ν̄1)r2
1 −1 + ν̄1 ν̄1r

2
1 0

)
MTot,1

~AoutN = 0 (51)

This expression fails to produce σr(r1) = 0 for the case of a plugged bore, that of r1 = 0.
However, it fortuitously reproduces the correct boundary condition for a plugged bore, that of:

u(r1) = 0 (52)

therefore Equation 51 can be used either for the open-bore or plugged bore case.

9.3 Constrained axial tension

The condition that Fz is constrained to a known value is, from Section 8:

(
2π
[
ĒN ν̄N

(
r2
N+1 1 0 0

)
− Ē1ν̄1

(
r2
1 1 0 0

)
MTot,1 +

N∑
i=2

(Ēi−1ν̄i−1 − Ēiν̄i)
(
r2
i 1 0 0

)
MTot,i

]
+

(
0 0 〈ĒA〉 −Fz

))
~AoutN = 0

(53)
where 〈ĒA〉 is defined in Equation 43

9.4 The boundary condition matrix

There is a reason that we have expressed each boundary condition and constraint as a row vector
for an inner product. We can write the three constraints simultaneously as one matrix equation to
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solve in Section 10:

MBC
~AoutN =

0
0
0

 (54)

where

MBC =

MBC,1

MBC,2

MBC,3

 (55)

where MBC,1 is the outer boundary condition inner product row vector

MBC,1 =
(
(1 + ν̄N )r2

N+1 −1 + ν̄N ν̄Nr
2
N+1 0

)
(56)

MBC,2 is the inner boundary condition inner product row vector

MBC,2 =
(
(1 + ν̄1)r2

1 −1 + ν̄1 ν̄1r
2
1 0

)
MTot,1 (57)

and MBC,3 is the axial tension constraint inner product row vector

MBC,3 =

(
2π
[
ĒN ν̄N

(
r2
N+1 1 0 0

)
− Ē1ν̄1

(
r2
1 1 0 0

)
MTot,1

+

N∑
i=2

(Ēi−1ν̄i−1 − Ēiν̄i)
(
r2
i 1 0 0

)
MTot,i

]
+
(
0 0 〈ĒA〉 −Fz

)) (58)

10 The solution via matrix inversion

Because the MInt and MExt matrices stack by matrix multiplication into the MTot matrices, it
was convenient to include the column that multiplies the augmented fourth component (1) into the
boundary condition matrix MBC . However, for the purposes of solving Equation 54, it is convenient
to now break the boundary condition matrix into the columns that multiply A,B, εz and the column
that multiplies 1:

MBC
~AoutN = MBC,1−3

AoutN

BoutN

εz

+

MBC,1,4

MBC,2,4

MBC,3,4

 =

0
0
0

 (59)

where MBC,1−3 is the matrix composed of only the first three columns of MBC .

Thus the solution to this problem is:

AoutN

BoutN

εz

 = M−1
BC,1−3

−MBC,1,4

−MBC,2,4

−MBC,3,4

 (60)
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This is a 3× 3 matrix inversion problem, which is easily susceptible to the standard numerical
approaches such as Gaussian elimination. This is a very fast computation, appropriate for the inner
loop of optimizers or parallel database approaches.

Notably, this algorithm is linear with the number of layers, with the computation of MTot taking
the most time as N increases (O(N) time). This is a favorable scaling compared to the inversion of
a 2N × 2N matrix (requiring O(N3) time as implemented in PROCESS via Gaussian elimination),
which was the previous approach.

11 The model for transverse-isotropic materials

We will now generalize the model to transverse-isotropic materials, which have differing Young’s
Moduli and Poisson’s Ratio in the axial vs transverse directions.

The the strains are computed from the normal stresses σq ≡ σqq using the compliance form of
Hooke’s Law, which for a transverse-isotropic material is:

εr =
1

E⊥
σr −

ν⊥
E⊥

σθ −
νz,⊥
Ez

σz (61)

εθ =
1

E⊥
σθ −

ν⊥
E⊥

σr −
νz,⊥
Ez

σz (62)

εz =
1

Ez
σz −

ν⊥,z
E⊥

σr −
ν⊥,z
E⊥

σθ (63)

where E⊥ is the Young’s modulus in the transverse direction, Ez is the Young’s modulus in
the axial direction, ν⊥ is the Poisson’s ratio between the two transverse directions, ν⊥,z is the
Poisson’s ratio between the transverse and axial directions in that order, and νz,⊥ is the Poisson’s
ratio between the axial and transverse directions in that order.

Because of the symmetry of the compliance tensor, νz,⊥ and ν⊥,z are not independent, such
that

ν⊥,z
E⊥

=
νz,⊥
Ez

(64)

Anisotropic E, ν can come about when “uniform” layers are actually composed of fibers of
differing material, long in the axial direction. The values of E, ν that result from this case are
discussed in Section 13. Likely values of Ez, E⊥ are the same as before in the tens to hundreds
of gigapascals (1010 − 1011 GPa). Values of νz,⊥ are between 0 and 1/2, often around ν ∼ 0.3.
The value of ν⊥,z is computed from νz,⊥, E⊥, Ez via Equation 64. Values of ν⊥ can be quite high,
approaching 1 if axial stiffness is larger than transverse, being limited by the equation ν⊥ ≤ 1−ν⊥,z.
A likely value of ν⊥ might be 0.6 of this maximum.

These equations can be inverted into the stiffness form of Hooke’s Law:

σr = Ē⊥(εr + ν̄⊥εθ + ν̄z,⊥εz) (65)
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σθ = Ē⊥(εθ + ν̄⊥εr + ν̄z,⊥εz) (66)

σz = Ēz(εz + ν̄⊥,z(εr + εθ)) (67)

Equations 65 - 67 replace Equations 7 - 9.

where Ē and ν̄ are the effective Young’s modulus and Poisson’s ratio holding strain rather than
stress cross-terms constant [EDIT: Do these have names?]:

Ēz ≡ Ez
1− ν⊥

1− ν⊥ − 2ν⊥,zνz,⊥
(68)

Ē⊥ ≡ E⊥
1− ν⊥,zνz,⊥

(1− ν⊥ − 2ν⊥,zνz,⊥)(1 + ν⊥)

ν̄⊥,z ≡
ν⊥,z

1− ν⊥
(69)

ν̄⊥ ≡
ν⊥ + ν⊥,zνz,⊥
1− ν⊥,zνz,⊥

ν̄z,⊥ ≡ νz,⊥
1 + ν⊥

1− ν⊥,zνz,⊥
Equations 68 - 69 replace Equations 10 - 11.

The body force balance equation is the same, but with Ē replaced with Ē⊥:

0 =
1

Ē⊥
f − ∂2

ru−
1

r
∂ru+

1

r2
u (70)

Equation 70 replaces Equation 13.

The radial and azimuthal stress are now:

σr(r) = Ē⊥[A(1 + ν̄⊥)−B(1− ν̄⊥)
1

r2
+ ν̄z,⊥εz] (71)

σθ(r) = Ē⊥[A(1 + ν̄⊥) +B(1− ν̄⊥)
1

r2
+ ν̄z,⊥εz] (72)

Equations 71 and 72 replace Equations 16 and 17.

All transformation matrix elements are the same, but with with Ē replaced with Ē⊥ in all
elements, with ν̄ replaced with ν̄⊥ in elements Mi,1−2 and ν̄z,⊥ in elements Mi,3:

Ain

Bin

εz
1

 = MInt


Aout

Bout

εz
1

 =


1 0 0 − 1

2Ē⊥

∫ rout

rin
dr × f(r)

0 1 0 1
2Ē⊥

∫ rout

rin
dr × r2f(r)

0 0 1 0
0 0 0 1



Aout

Bout

εz
1

 (73)
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
Aouti−1

Bouti−1

εz
1

 = MExt,i


Aini
Bini
εz
1

 =


M1,1 M1,2 M1,3 0
M2,1 M2,2 M2,3 0

0 0 1 0
0 0 0 1



Aini
Bini
εz
1

 (74)

M1,1 =
1

2
[
Ē⊥,i
Ē⊥,i−1

(1 + ν̄⊥,i) + 1− ν̄⊥,i−1] (75)

M1,2 =
1

r2
i

1

2
[1− ν̄⊥,i−1 −

Ē⊥,i
Ē⊥,i−1

(1− ν̄⊥,i)] (76)

M1,3 =
1

2
[
Ē⊥,i
Ē⊥,i−1

ν̄z,⊥,i − ν̄z,⊥,i−1] (77)

M2,1 = r2
i (1−M1,1) (78)

M2,2 = 1− r2
iM1,2 (79)

M2,3 = −r2
iM1,3 (80)

Equation 73 replaces 23. Equations 74 - 80 replace Equations 30 - 36.

For the global boundary condition row vectors, the same ν̄ relationship holds:

MBC,1
~AoutN =

(
(1 + ν̄⊥,N )r2

N+1 −1 + ν̄⊥,N ν̄z,⊥,Nr
2
N+1 0

)
~AoutN = 0 (81)

MBC,2
~AoutN =

(
(1 + ν̄⊥,1)r2

1 −1 + ν̄⊥,1 ν̄z,⊥,1r
2
1 0

)
MTot,1

~AoutN = 0 (82)

Equations 81 and 82 replace Equations 49 and 51.

For the axial force row vector, all ν̄ values are replaced with ν̄⊥,z and all Ē values are replaced
with Ēz values, including 〈ĒA〉 → 〈ĒzA〉.

MBC,3 =

(
2π
[
Ēz,N ν̄⊥,z,N

(
r2
N+1 1 0 0

)
− Ēz,1ν̄⊥,z,1

(
r2
1 1 0 0

)
MTot,1

+

N∑
i=2

(Ēz,i−1ν̄⊥,z,i−1 − Ēz,iν̄⊥,z,i)
(
r2
i 1 0 0

)
MTot,i

]
+
(
0 0 〈ĒzA〉 −Fz

)) (83)

Equation 83 replaces Equation 58.
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12 Useful integrals of f(r) for various forces

f(r) is defined in Equation 12. It is the volumetric body force, such that dFr = f(r)dV where dV
is a differential volume element.

f(r) enters our problem in the form of two integrals, in Equations 18 and 19, respectively:

A(r) = Aout − 1

2Ē

∫ rout

r

dr × f(r)

B(r) = Bout +
1

2Ē

∫ rout

r

dr × r2f(r)

We will now discuss two useful functional forms of f(r), the radially uniform case and the
Lorentz force case.

12.1 The radially uniform case

This is a simple case, useful for evaluating the solution algorithm in a toy problem. This is what is
implemented in MATLAB in Section 15.

This case is written:
fi(r) = fi (84)

And the solutions to the equations are:

Ai(r) = Aouti − 1

2Ēi

∫ ri+1

r

dr × fi(r) = Aouti − 1

2Ēi
fi(ri+1 − r) (85)

Bi(r) = Bouti +
1

2Ēi

∫ rout

r

dr × r2f(r) = Bouti +
1

6Ēi
fi(r

3
i+1 − r3) (86)

Thus MInt and Equation 23 become:
Aini
Bini
εz
1

 = MInt,i


Aouti

Bouti

εz
1

 =


1 0 0 − 1

2Ēi
fi(ri+1 − ri)

0 1 0 1
6Ēi

fi(r
3
i+1 − r3

i )

0 0 1 0
0 0 0 1



Aouti

Bouti

εz
1



12.2 The Lorentz force case

This section evaluates the case that the force density f(r) results from a current density ji in the ẑ
axial direction, uniform within each layer i. f(r) is computed using the Lorentz force, fr = jzBθ,
where Bθ is found using Ampere’s law.
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Computing this, we find that

fi(r) =
µ0

2π

[
ji(
∑
p<i

∆Ip)
1

r
− j2

i πr
2
i

1

r
+ j2

i πr
]

(87)

where µ0 is the permeability of free space, µ0 ≡ 4π× 10−7 H/m, and ∆Ip is the current carried by
layer p:

∆Ip =

∫ rp+1

rp

dr × 2πrj(r) = jpπ(r2
p+1 − r2

p) (88)

The necessary integrals are also analytically solvable:∫ ri+1

r

dr × fi(r) =
µ0

2π

[(
ji(
∑
p<i

∆Ip)− j2
i πr

2
i

)
ln
ri+1

r
+

1

2
j2
i π(r2

i+1 − r2)
]

(89)

∫ ri+1

r

dr × r2fi(r) =
µ0

2π

[(
ji(
∑
p<i

∆Ip)− j2
i πr

2
i

)1

2
(r2
i+1 − r2) +

1

4
j2
i π(r4

i+1 − r4)
]

(90)

Recall that the quantities to plug into Equation 23 to obtain MInt,i are these integrals evaluated
at r = ri. They have been left in their fully general form so that A(r), B(r) may be computed,
allowing computation of stresses, strains, and displacement at all r, not just the boundaries.

13 Property “smearing”

If two member are in parallel, that is they both connect to terminals at which force is applied,
the effective Young’s modulus of the composite member can be computed from the assumption
that both members have the same strain. The result is an areal average of the individual Young’s
moduli:

Eparallel =

∑
iAiEi∑
iAi

= 〈E〉 (91)

where Ai is the cross-section area of member i.

The Poisson’s ratios add in the same way:

νparallel =

∑
iAiνi∑
iAi

= 〈ν〉 (92)

If two members are in series, that is one member connects a terminal to the other member, which
connects to a terminal, the effective Young’s modulus of the composite member can be computed
from the assumption that both members have the same stress. The result is an inverse average of
the weighted average of the individual Young’s moduli:

Eseries =

∑
i Li∑

i Li/Ei
=

1

〈1/E〉
(93)
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where Li is the length of member i.

The Poisson’s ratios add in a similar way, but weighted by the inverse Young’s modulus:

νseries =

∑
i Liνi/Ei∑
i Li/Ei

(94)

If the layers are made of bundles of axial fibers, or bundles of axial fibers embedded in a bulk
matrix, then properties in the axial direction will sum in the parallel way, and properties in the
transverse direction will sum in the series way. Furthermore, if the fibers are small and randomly
distributed (not in a regular grid), the various dimension-averages Ai, Li can just be assumed to
take the value of the volume fraction fV of that material:

Eparallel → Ez

νparallel → νz

Ai → fV,i

Eseries → E⊥

νseries → ν⊥

Li → fV,i

In the PROCESS code as implemented, the above assumption (small fibers, randomly dis-
tributed, volume-averaged materials) is not assumed. Rather, a perfect rectangular grid is used,
and series and parallel sums are nested to produce bulk materials properties. The relative applica-
bilites of these competing models is not settled.

14 If the innermost layers do not contribute to the axial
force

For many tokamaks, the TF coil is positioned radially outward of another structure, the Central
Solenoid (CS). For “bucked and wedged” tokamaks,[17] the inner layer of the TF coil is in contact
with the outer layer of the Central Solenoid (CS), but there is a friction-free layer between them,
which allows the CS not to expand with the TF coil when axial force Fz is applied to the latter.
This invalidates the assumption that εz is constant. Outward of some radius, as before, εz is set by
the condition that the axial stress must integrate to Fz. But inward of that radius, εz is set by the
condition that there is no axial force.

Suppose that the innermost layer which contributes to Fz is layer iF . Layers with i < iF do not
contribute to Fz, and layers with i ≥ iF do contribute to Fz.

To adapt the model to this condition, all of the matrices must change. Most notably the
“external transformation matrix” MExt discussed in Section 6, and the axial tension row of the
boundary condition matrix, MBC,3, discussed in Sections 8 and 9.
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Because there are now two unknown axial strains, we must increase the dimension of the solution
vector. This section uses the following convention:

~Aji =


Aji
Bji
εz,out

1
εz,in

 (95)

where εz,out is the axial stress of the outer layers which contribute to Fz (layers with i ≥ iF ) and
εz,in is the axial stress of the inner layers which do not contribute to Fz (layers with i < iF ). εz,in
was added in position 5 in the vector, rather than position 4, so as to keep the matrices as similar
as possible.

To MInt, the only change is the addition to another column and row. This equation replaces
Equation 23:

Ain

Bin

εz,out
1

εz,in

 = MInt


Aout

Bout

εz,out
1

εz,in

 =


1 0 0 − 1

2Ē

∫ rout

rin
dr × f(r) 0

0 1 0 1
2Ē

∫ rout

rin
dr × r2f(r) 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Aout

Bout

εz,out
1

εz,in

 (96)

To MExt, the changes are more serious:
Aouti−1

Bouti−1

εz,out
1

εz,in

 = MExt,i


Aini
Bini
εz,out

1
εz,in

 =


M1,1 M1,2 M1,3 0 M1,5

M2,1 M2,2 M2,3 0 M2,5

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Aini
Bini
εz,out

1
εz,in

 (97)

M1,1,M1,2,M2,1,M2,2 stay the same. M1,3,M1,5,M2,3,M2,5 are different, and have different form
depending on the relative values of i, iF :

M1,3 =


1
2 [ Ēi

Ēi−1
ν̄i − ν̄i−1] (i > iF )

1
2 [ Ēi

Ēi−1
ν̄i] (i = iF )

0 (i < iF )

(98)

M1,5 =


0 (i > iF )
1
2 [−ν̄i−1] (i = iF )
1
2 [ Ēi

Ēi−1
ν̄i − ν̄i−1] (i < iF )

M2,3 = −r2
iM1,3

M2,5 = −r2
iM1,5
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The outer boundary condition, MBC,1 in Section 9, needs a minor alteration.

MBC,1 =
(
(1 + ν̄N )r2

N+1 −1 + ν̄N ν̄Nr
2
N+1 0 0

)
(99)

The inner boundary condition, MBC,2 in Section 9, also needs a minor alteration which depends
on whether iF > 1, that is whether the axial force decoupling is being actively used.

MBC,2 =


(

(1 + ν̄1)r2
1 −1 + ν̄1 0 0 ν̄1r

2
1

)
MTot,1 (iF > 1)(

(1 + ν̄1)r2
1 −1 + ν̄1 ν̄1r

2
1 0 0

)
MTot,1 (iF = 1)

(100)

The axial force inner product, which is expressed as Fz,ν̄ in Section 8 and MBC,3 in Section 9,
must now become two inner products. This equation replaces Equation 58:

MBC,3 =

(
2π
[
ĒN ν̄N

(
r2
N+1 1 0 0 0

)
− ĒiF ν̄iF

(
r2
iF

1 0 0 0
)
MTot,iF

+

N∑
i=iF +1

(Ēi−1ν̄i−1 − Ēiν̄i)
(
r2
i 1 0 0 0

)
MTot,i

]
+
(
0 0 〈ĒA〉out −Fz 0

)) (101)

where 〈ĒA〉out is

〈ĒA〉out = π

N∑
i=iF

Ēi(r
2
i+1 − r2

i ) (102)

We now need another boundary condition, MBC,4, which enforces that there is zero axial force
on the inner subset, layers for which i < iF :

MBC,4 =

(
2π
[
ĒiF−1ν̄iF−1

(
r2
iF

1 0 0 0
)
MTot,iF − Ē1ν̄1

(
r2
1 1 0 0 0

)
MTot,1

+

iF−1∑
i=2

(Ēi−1ν̄i−1 − Ēiν̄i)
(
r2
i 1 0 0 0

)
MTot,i

]
+
(
0 0 0 0 〈ĒA〉in

)) (103)

where 〈ĒA〉in is

〈ĒA〉in = π

iF−1∑
i=1

Ēi(r
2
i+1 − r2

i ) (104)

The matrix inversion / Gaussian elimination, Equations 59 and 60 in Section 10 must also
change:

MBC
~AoutN = MBC,1−3,5


AoutN

BoutN

εz,out
εz,in

+


MBC,1,4

MBC,2,4

MBC,3,4

MBC,4,4

 =


0
0
0
0

 (105)
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where MBC,1−3,4 is the matrix composed of columns 1, 2, 3, and 5 of MBC .

Thus the solution to this problem is:


AoutN

BoutN

εz,out
εz,in

 = M−1
BC,1−3,4


−MBC,1,4

−MBC,2,4

−MBC,3,4

−MBC,4,4

 (106)

15 A MATLAB implementation of this model

% Charles Swanson, cswanson@pppl.gov

% 2022/02/14

% This MATLAB script is the companion to the extended plane strain paper. It

% assumes N uniform layers with random thicknesses, materials properties, and

% Lorentz body forces. Materials properties are transverse-isotropic. It assumes

% a random, known axial tension. It calcualtes the Lame parameter solution

% vector, the axial strains, the radial displacement as a function of

% radius, the radial and azimuthal strain as a function of radius, and the

% radial, azimuthal, and axial stress as a function of radius. Includes

% frictional decoupling of an inner set of layers; only the outer layers

% contribute to the axial force.

close all;clear all;

%% Set up input parameters

% Which body force model to use. % True: Lorentz. False: Uniform.

boolLorentz = true; % Lorentz force

% Innermost layer which still contributes to Fz

%innerFzLayer = 1; % Uniform strain, no decoupled layer

innerFzLayer = 5; % This layer and outward contribute to Fz

% Number of layers

N = 10;

% Layer thicknesses. dr(i+1) is thickness of layer i.

% dr(1) is innermost point. dr(1)=0 corresponds to plugged bore.

dr = rand(1,N+1);

%dr(1) = 0; % Plugged

% Force in the Z direction
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Fz = 100e9*rand;

if boolLorentz

% Layer currents for body force calculation

dI = 100e6*rand(1,N);

else

% uniform radial body force densities;

f = 100e6*(1-2*rand(1,N));

end

% Young’s moduli and Poisson’s ratios

Ez = 200e9*rand(1,N); % Axial Young’s modulus

Et = 200e9*rand(1,N); % Transverse Young’s modulus

nut = 0.5*rand(1,N); % Transverse-transverse Poisson’s ratio

nutz = 0.5*rand(1,N); % Transverse-axial Poisson’s ratio

nuzt = 0.5*rand(1,N); % Axial-transverse Poisson’s ratio

%% Set up the geometry and materials properties:

% Inter-layer spacing, r(1) is innermost surface, r(N+1) is outermost surface

% r(j) separates layer j-1 from layer j

% dr(1) = 0 corresponds to plugged bore

sumMat = 1:(N+1);

sumMat = sumMat>=sumMat’;

r = sum(sumMat.*dr’,1);

%% SECTION 3:

% With transverse-isotropic materials properties from Section 12

% nutz set by symmetry of compliance tensor

nutz = nuzt .* Et ./ Ez;

% Effective Young’s moduli and Poisson’s ratios in stiffness form

EzBar = Ez .* (1-nut) ./ (1-nut-2*nutz.*nuzt);

EtBar = Et .* (1-nutz.*nuzt) ./ (1-nut-2*nutz.*nuzt) ./ (1+nut);

nutBar = (nut+nutz.*nuzt) ./ (1-nutz.*nuzt);

nutzBar = nutz ./ (1-nut);

nuztBar = nuzt .* (1+nut) ./ (1-nutz.*nuzt);

%% SECTION 13:

% General body force integrals

if boolLorentz

% Permeability of free space

mu0 = 4*pi*1e-7;

% Current enclosed within the inner radius of each layer

sumMat = 1:N;

sumMat = sumMat>sumMat’;
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IEnc = sum(sumMat.*dI’,1);

% Current density of each layer

j = dI./pi./(r(2:end).^2-r(1:(end-1)).^2);

% Factors that multiply r linearly and reciprocally in force density

fLinFac = mu0/2 * j.^2;

fRecFac = mu0/2 * (j.*IEnc/pi - j.^2.*r(1:N).^2);

% Lorentz body force f

% Body force

fBody = @(rArg,layer) fLinFac(layer).*rArg + fRecFac(layer)./rArg;

% A integral, integral of f: (including correction for if r(1)==0)

fIntA = @(rArg,layer) 1/2*fLinFac(layer).*(r(layer+1).^2-rArg.^2) + ...

fRecFac(layer).*log(r(layer+1)./(rArg+(fRecFac(layer)==0)));

% B integral, integral of fr^2:

fIntB = @(rArg,layer) 1/4*fLinFac(layer).*(r(layer+1).^4-rArg.^4) + ...

1/2*fRecFac(layer).*(r(layer+1).^2-rArg.^2);

else

% Uniform body force f

% Body force

fBody = @(rArg,layer) f(layer);

% A integral, integral of f:

fIntA = @(rArg,layer) f(layer).*(r(layer+1)-rArg);

% B integral, integral of fr^2:

fIntB = @(rArg,layer) 1/3*f(layer)*(r(layer+1).^3-rArg.^3);

end

%% SECTION 5:

% With transverse-isotropic materials properties from Section 12

% With axial decoupling of inner layers from Section 15

% Generate each MInt(:,:,j), transfer matrix within one layer, such that

% (AIn(j);BIn(j);epsZOut;1;epsZIn) = MInt(:,:,j)*(AOut(j);BOut(j);epsZOut;1;epsZIn)

MInt = zeros(5,5,N);

for layer = 1:N

MInt(1,1,layer) = 1;

MInt(1,4,layer) = -1/2/EtBar(layer)*fIntA(r(layer),layer);

MInt(2,2,layer) = 1;

MInt(2,4,layer) = 1/2/EtBar(layer)*fIntB(r(layer),layer);

MInt(3,3,layer) = 1;

MInt(4,4,layer) = 1;

MInt(5,5,layer) = 1;

end

%% SECTION 6:
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% With transverse-isotropic materials properties from Section 12

% With axial decoupling of inner layers from Section 15

% Generate each MExt(:,:,j), transfer matrix for layer boundaries, such that

% (AOut(j-1);BOut(j-1);epsZOut,epsZIn;1) = MExt(:,:,j)*(AIn(j);BIn(j);epsZOut,epsZIn;1)

MExt = zeros(5,5,N);

for layer = 2:N

EFac = EtBar(layer)/EtBar(layer-1);

MExt(1,1,layer) = 1/2*(EFac*(1+nutBar(layer))+1-nutBar(layer-1));

MExt(1,2,layer) = 1/2/r(layer)^2*(1-nutBar(layer-1)-EFac*(1-nutBar(layer)));

if layer==innerFzLayer

MExt(1,3,layer) = 1/2*EFac*nuztBar(layer);

MExt(1,5,layer) = 1/2*(-nuztBar(layer-1));

elseif layer<innerFzLayer

MExt(1,3,layer) = 0;

MExt(1,5,layer) = 1/2*(EFac*nuztBar(layer)-nuztBar(layer-1));

elseif layer>innerFzLayer

MExt(1,3,layer) = 1/2*(EFac*nuztBar(layer)-nuztBar(layer-1));

MExt(1,5,layer) = 0;

end

MExt(2,1,layer) = r(layer)^2*(1-MExt(1,1,layer));

MExt(2,2,layer) = (1-r(layer)^2*MExt(1,2,layer));

MExt(2,3,layer) = -r(layer)^2*MExt(1,3,layer);

MExt(2,5,layer) = -r(layer)^2*MExt(1,5,layer);

MExt(3,3,layer) = 1;

MExt(4,4,layer) = 1;

MExt(5,5,layer) = 1;

end

%% SECTION 7

% With axial decoupling of inner layers from Section 15

% Generate a total MTot matrix for ease of relating global boundaries, relating

% AIn(j),BIn(j) to AOut(N),BOut(N)

MTot = zeros(5,5,N);

MTot(:,:,N) = (1:5)==(1:5)’;

MTot(:,:,N) = MInt(:,:,N)*MTot(:,:,N);

for layer = (N-1):-1:1

MTot(:,:,layer) = MInt(:,:,layer)*MExt(:,:,layer+1)*MTot(:,:,layer+1);

end

%% SECTION 8

% With transverse-isotropic materials properties from Section 12

% With axial decoupling of inner layers from Section 15

% Effective axial stiffness times cross sectional area
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EBarAvgArea = pi*EzBar.*(r(2:end).^2-r(1:N).^2);

EBarAvgAreaOut = sum(EBarAvgArea(innerFzLayer:end));

EBarAvgAreaIn = sum(EBarAvgArea(1:(innerFzLayer-1)));

% The Fz evalution row of the matrix

FzRowOut = 2*pi*(EzBar(N)*nutzBar(N)*[r(end).^2 1 0 0 0] - ...

EzBar(innerFzLayer)*nutzBar(innerFzLayer)*[r(innerFzLayer).^2 1 0 0 0]*MTot(:,:,innerFzLayer));

for layer = (innerFzLayer+1):N

FzRowOut = FzRowOut + 2*pi*(EzBar(layer-1)*nutzBar(layer-1) - ...

EzBar(layer)*nutzBar(layer))*([r(layer).^2 1 0 0 0]*MTot(:,:,layer));

end

% Include the effect of axial stiffness

FzRowOut(3) = FzRowOut(3) + EBarAvgAreaOut;

if innerFzLayer>1

% The Fz evalution row of the matrix

FzRowIn = 2*pi*(EzBar(innerFzLayer-1)*nutzBar(innerFzLayer-1)* ...

[r(innerFzLayer).^2 1 0 0 0]*MTot(:,:,innerFzLayer) - ...

EzBar(1)*nutzBar(1)*[r(1).^2 1 0 0 0]*MTot(:,:,1));

for layer = 2:(innerFzLayer-1)

FzRowIn = FzRowIn + 2*pi*(EzBar(layer-1)*nutzBar(layer-1) - ...

EzBar(layer)*nutzBar(layer))*([r(layer).^2 1 0 0 0]*MTot(:,:,layer));

end

% Include the effect of axial stiffness

FzRowIn(5) = FzRowIn(5) + EBarAvgAreaIn;

else

FzRowIn = [0 0 0 0 1];

end

%% SECTION 9

% With transverse-isotropic materials properties from Section 12

% With axial decoupling of inner layers from Section 15

% The boundary condition matrix, MBC*[AOut(N);BOut(N);epsZOut;1epsZIn] = 0

MBC = [(1+nutBar(end))*r(end)^2 -1+nutBar(end) nuztBar(end)*r(end)^2 0 0;

[(1+nutBar(1))*r(1).^2 -1+nutBar(1) [(innerFzLayer<=1) 0 (innerFzLayer>1)].* ...

nuztBar(1)*r(1)^2]*MTot(:,:,1);

FzRowOut-[0 0 0 Fz 0]

FzRowIn];

%% SECTION 10

% With transverse-isotropic materials properties from Section 12

% With axial decoupling of inner layers from Section 15

% The solution vector via matrix inversion

MBCSolvEff = MBC(:,[1:3 5]);
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RHSVec = [-MBC(1,4);-MBC(2,4);-MBC(3,4);-MBC(4,4)];

AVecSolution = MBCSolvEff\RHSVec;

AVecSolution = [AVecSolution(1:3);1;AVecSolution(4)];

%% PLOT OUTPUTS

% Vectors of Lame parameters

AOut = zeros(1,N);

AIn = zeros(1,N);

BOut = zeros(1,N);

BIn = zeros(1,N);

% Set outward solution vector

AOut(N) = AVecSolution(1);

BOut(N) = AVecSolution(2);

epsZOut = AVecSolution(3);

epsZIn = AVecSolution(5);

% Set each A(j), B(j)

for layer = 2:N

AVecLayer = MTot(:,:,layer)*AVecSolution;

AIn(layer) = AVecLayer(1);

BIn(layer) = AVecLayer(2);

AVecLayer = MExt(:,:,layer)*AVecLayer;

AOut(layer-1) = AVecLayer(1);

BOut(layer-1) = AVecLayer(2);

end

AVecLayer = MTot(:,:,1)*AVecSolution;

AIn(1) = AVecLayer(1);

BIn(1) = AVecLayer(2);

% Plotting domain

drPlot = 1e-3;

rPlot = r(1):drPlot:r(N+1);

rPlot = [rPlot r(N+1)];

inds = 1:numel(rPlot);

% Populate each each layer’s plotting functions

for layer = 1:N

boolRange = (rPlot<=r(layer+1)).*(rPlot>=r(layer));

inRange = inds(boolRange==1);

% Local values of A, B coefficients

APlot(inRange) = AOut(layer) - 1/2/EtBar(layer)*fIntA(rPlot(inRange),layer);

BPlot(inRange) = BOut(layer) + 1/2/EtBar(layer)*fIntB(rPlot(inRange),layer);
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% Local values of materials properties

EzBarPlot(inRange) = EzBar(layer);

EtBarPlot(inRange) = EtBar(layer);

nutBarPlot(inRange) = nutBar(layer);

nutzBarPlot(inRange) = nutzBar(layer);

nuztBarPlot(inRange) = nuztBar(layer);

EzPlot(inRange) = Ez(layer);

EtPlot(inRange) = Et(layer);

nutPlot(inRange) = nut(layer);

nutzPlot(inRange) = nutz(layer);

nuztPlot(inRange) = nuzt(layer);

epsZPlot(inRange) = ones(size(inRange)).*((layer>=innerFzLayer)*epsZOut + ...

(layer<innerFzLayer)*epsZIn);

end

% Displacement

uPlot = APlot.*rPlot + BPlot./rPlot;

% Strains

epsRPlot = APlot - BPlot./rPlot.^2;

epsThetaPlot = APlot + BPlot./rPlot.^2;

% Stresses

sigRPlot = EtBarPlot.*((1+nutBarPlot).*APlot - (1-nutBarPlot).*BPlot./rPlot.^2 + ...

nuztBarPlot.*epsZPlot);

sigThetaPlot = EtBarPlot.*((1+nutBarPlot).*APlot + (1-nutBarPlot).*BPlot./rPlot.^2 + ...

nuztBarPlot.*epsZPlot);

sigZPlot = EzBarPlot.*(epsZPlot + nutzBarPlot.*(epsRPlot + epsThetaPlot));
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