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1 Abstract

This calculation supports a model of the stress and strain distribution in a Tokamak toroidal
field (TF) coil. The model assumes that the TF coil structure is composed of uniform, long,
axisymmetric layers of transverse-isotropic materials. However, in a true TF coil the winding pack
layer is composite, composed of many individual windings, each with their own elastic properties.
This document derives formulae for approximating the effective, smeared elastic properties of the
composite material. We approximate the axial Young’s modulus and the axial-transverse Poisson’s
ratio of two members carrying an axial force in parallel and in series. These quantities are sufficient
to approximate the axial and transverse Young’s modulus and the transverse and axial-transverse
Poisson’s ratio of the TF coil winding pack, given certain assumptions about the winding pack
layout. The findings can be simply formulated as weighted averages.

2 Introduction

Figure 1 summarizes the assumed geometry of the two cases considered: a) Two members carrying
a force in parallel and b) two members carrying a force in series. The geometry of the problem is
such that the force is applied in direction ĵ. The members have Young’s modulus in the ĵ direction
Ej . The members are assumed to be transverse-isotropic, such that the j,⊥ Poisson’s ratio can be
written νj,⊥ = νj,i = νj,k.

As the order of indices of the Poisson’s ratio may not be uniform in the literature, here we
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Figure 1: The assumed geometry of our problems: a) Members 1 and 2 carrying force F in parallel.
b) Members 1 and 2 carrying force F in series. F is in the ĵ direction. Ej is the Young’s modulus

in the ĵ direction. νj,⊥ = νj,i = νj,k is the Poisson’s ratio in the j-transverse direction, assumed to

be equal in the two transverse directions î, k̂.

clarify that we are using the convention

νj,⊥ =
(∂ε⊥
∂εj

)
σj

(1)

where ε is the strain and (·)σj indicates that this is the deformation under stress in the ĵ direction
only.

This report contains the following sections:

� Section 3: A simple description of the findings of this calculation

� Section 4: A summary of the assumptions involved in this calculation

� Section 5: The derivation of the compositing formulae

� Section 6: The application of these formulae to the PROCESS TF coil model

This work is in support of the PROCESS 0D systems code.[1, 2, 3, 4] As of this writing, there
are a few places in the TF coil and Central Solenoid (CS) coil stress computation where bespoke
analytic results based on isotropic forms of these formulae are used.[5] This work reproduces these
results, extends them to anisotropy, and introduces composition operations which makes it easier
to composite many (> 2) members.

The smeared elastic properties are passed to an axisymmetric extended plane strain[6] solver,
which is responsible for determining the radial profiles of the stresses and strains within the TF
coils.[7, 8]
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3 Simple statement of the findings

We find that: the smeared axial Young’s modulus of two members carrying an axial force in parallel
is the cross-sectional-area-weighted average of the individual Young’s moduli.

Ej,par =

∑
EjA∑
A

= 〈Ej〉A (2)

The smeared axial-transverse Poisson’s ratio of these two members is the cross-sectional-area-
weighted average of the individual axial-transverse Poisson’s ratios.

νj,⊥,par =

∑
νj,⊥A∑
A

= 〈νj,⊥〉A (3)

The smeared axial Young’s modulus of two members carrying an axial force in series is the
inverse of the length-weighted average of the inverse of the individual Young’s moduli.

Ej,ser =

∑
L∑

L/Ej
= 〈E−1j 〉

−1
l (4)

The smeared axial-transverse Poisson’s ratio of these two members is the weighted average of
the individual axial-transverse Poisson’s ratios, weighted by the ratios of length to axial Young’s
modulus.

νj,⊥,ser =

∑
νj,⊥L/Ej∑
L/Ej

= 〈νj,⊥〉L/Ej
(5)

4 Summary of the assumptions

4.1 Axial Young’s modulus of two members carrying an axial force in
parallel

The central assumption of this computation is that the total axial strain εj is uniform and equal
between the two members, ε1,j = ε2,j .

This assumption is valid when the boundary conditions enforce uniform axial deformation,
or when the members are long enough that shear between the members enforces this condition.
When the members being composited are themselves made of series-composited sub-members, the
effect of neighboring parallel members whose stiffness may vary differently along their length is not
considered. See Figure 2 for an illustration of this shortcoming.
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Figure 2: An example of an effect which is not captured by this model: a) The Ej of the green
and red members are zero, as they are each serial-composited with an empty space. Therefore the
Ej of the parallel-composited member is zero. However, in b) it is revealed that these members
are joined, and so constrain each other’s axial deformation via shear. Ej 6= 0 in this case. This
behavior is not captured by the model.

4.2 Axial-transverse Poisson’s ratio of two members carrying an axial
force in parallel

The central assumptions of this computation are: that the dynamics transverse to j are isotropic,
and that transverse expansion/contraction of one member as a result of axial stress is unimpeded
by the presence of the other members.

This assumption is valid when the axial-transverse Poisson’s ratios of the two members are
similar, or when relative transverse motion between the members is permitted due to a frictionless
interlayer, or when the members are arranged in a transverse tessellation which permits differential
expansion/contraction. The effect of neighboring parallel members constraining the transverse
expansion/contraction is not considered. See Figure 3 for an illustration of this shortcoming.

4.3 Axial Young’s modulus of two members carrying an axial force in
series

The central assumption of this computation is that the total axial stress σj is equal between the
two members, σ1,j = σ2,j .

This assumption is valid when the two members being composited are uniform, and are free to
axially deform by differing amounts. The effect of neighboring parallel members constraining the
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Figure 3: An example of another effect which is not captured by this model. Suppose the red mem-
ber has a much higher Poisson’s ratio than the green or yellow members. a) shows the configuration
before force is applied. b) shows the configuration after force is applied. Independent of the green
and yellow members, the red member would contract transversely under Poisson effects much more
than shown. It is unable to contract by this amount due to the constraining presence of the green
and yellow members. This behavior is not captured by the model.

axial deformation is not considered. See Figure 2 for an illustration of this shortcoming.

4.4 Axial-transverse Poisson’s ratio of two members carrying an axial
force in series

The central assumptions of this computation are again: That the dynamics transverse to j are
isotropic, and that transverse areal contraction of one member as a result of axial stress is unimpeded
by the presence of the other members.

This assumption is valid when the axial-transverse Poisson’s ratios of the two members are
similar, or when the members are arranged in a transverse-axial tessellation which permits differen-
tial expansion/contraction. The effect of neighboring parallel members constraining the transverse
deformation is not considered. See Figure 3 for an illustration of this shortcoming.
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5 Derivation of the compositing formulae

5.1 Axial Young’s modulus of two members carrying an axial force in
parallel

For the geometry of this case see Figure 1 (a). Take E1,j to be the Young’s modulus in the j
direction of Member 1, and E2,j to be the Young’s modulus in the j direction of Member 2. Take
A1 to be the cross-sectional area in the j direction of Member 1, and A2 to be the cross-sectional
area in the j direction of Member 2.

Consider E3,j to be the effective Young’s modulus in the j direction that a member of cross-
sectional area A3 = A1 +A2 would have to have, in order to produce the same strain εj under the
same force Fj = σ1,jA1 + σ2,jA2 as the two individual members in parallel. σ1,j , σ2,j are the stress
in the j direction of Members 1 and 2, respectively.

By the definition of Young’s modulus under elastic deformation:

σ1,j = E1,jεj (6)

σ2,j = E2,jεj (7)

The total force can be written in terms of both the individual members’ materials properties
and the effective, composited, smeared:

Fj = (E1,jA1 + E2,jA2)εj (8)

Fj = E3,jA3εj (9)

Equating these two expressions:

E3,j =
E1,jA1 + E2,jA2

A1 +A2
(10)

or more generally

Ej,par =

∑
EjA∑
A

= 〈Ej〉A (11)

where Ej,par is the smeared Young’s modulus in the j direction of any number of parallel-composited
(“par”) members, and the sum is over members.

5.2 Axial-transverse Poisson’s ratio of two members carrying an axial
force in parallel

For the geometry of this case see Figure 1 (a). Take ν1,j,⊥ to be the j-transverse Poisson’s ratio of
Member 1, and ν2,j,⊥ to be the j-transverse Poisson’s ratio of Member 2.
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Consider ν3,j,⊥ to be the effective j-transverse Poisson’s ratio that a member of cross-sectional
area A3 = A1 + A2 would have to have, in order to produce the same transverse areal strain ε3, A
due to Poisson effects under the same j-strain, εj . Transverse areal strain is the relative change in
the transverse area, εA = Aafter/Abefore − 1. Under the assumption of transverse-isotropy:

εA = εi + εk = 2εi = 2εk = 2ε⊥ (12)

Plugging the definition of A3 into the definition of εA above, we find

ε3,A =
ε1,AA1 + ε2,AA2

A1 +A2
(13)

Recalling that ε1,A = 2ε1,⊥ and ε1,⊥ = ν1,j,⊥εj (and likewise for Member 2:

ε3,⊥ =
ν1,j,⊥A1 + ν2,j,⊥A2

A1 +A2
εj (14)

This is clearly the effective smeared composite Poisson’s ratio:

ν3,j,⊥ =
ν1,j,⊥A1 + ν2,j,⊥A2

A1 +A2
(15)

or more generally

νj,⊥,par =

∑
νj,⊥A∑
A

= 〈νj,⊥〉A (16)

where νj,⊥,par is the smeared j,⊥ Poisson’s ratio of any number of parallel-composited (“par”)
members, and the sum is over members.

5.3 Axial Young’s modulus of two members carrying an axial force in
series

For the geometry of this case see Figure 1 (b). Take L1 to be the length in the j direction of
Member 1, and L2 to be the length in the j direction of Member 2.

Consider E3,j to be the effective Young’s modulus in the j direction that a member of length L3 =
L1 +L2 would have to have, in order to produce the same total strain ε3,j = L3,after/L3,before − 1
under the same uniform stress σj .

By the definition of L3 above,

(L1 + L2)ε3,j = ε1,jL1 + ε2,jL2 (17)

Plugging in the definition of Young’s modulus σj = Ejεj and rearranging

ε3,j =
L1/E1,j + L2/E2,j

L1 + L2
σj (18)
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The coefficient of σj on the right is the inverse Young’s modulus:

E3,j = σj/ε3,j =
L1 + L2

L1/E1,j + L2/E2,j
(19)

or more generally

Ej,ser =

∑
L∑

L/Ej
= 〈E−1j 〉

−1
l (20)

where Ej,ser is the smeared Young’s modulus in the j direction of any number of series-composited
(“ser”) members, and the sum is over members.

5.4 Axial-transverse Poisson’s ratio of two members carrying an axial
force in series

For the geometry of this case see Figure 1 (b).

Consider ν3,j,⊥ to be the effective j-transverse Poisson’s ratio that a member of length L3 =
L1 + L2 would have to have, in order to produce the same transverse volume strain ε3, V due
to Poisson effects under the same uniform j-stress, σj . Transverse volume strain is the relative
change in the volume, εV = Vafter/Vbefore − 1, neglecting axial j elongation/contraction. Under
the assumption of transverse-isotropy:

εV = εi + εk = 2εi = 2εk = 2ε⊥ (21)

The reason we have chosen volume V and not area A is that the cross-sectional area now changes
under σj . The volume strain composites as the weighted average of the length because V =

∑
L×A:

ε3,V L3 = ε1,V L1 + ε2,V L2 (22)

Bringing σj and Ej into it:

ε1,⊥ = ν1,j,⊥ε1,j = ν1,j,⊥
σj
E1,j

(23)

and likewise for Member 2.

Combining these equations:

ε3,⊥ =
ν1,j,⊥

L1

E1,j
+ ν2,j,⊥

L2

E2,j

L1 + L2
σj (24)

Recall in the last section we found E3,j which relates σj = E3,jε3,j :

ε3,⊥ =
ν1,j,⊥

L1

E1,j
+ ν2,j,⊥

L2

E2,j

L3

E3

ε3,j (25)
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Figure 4: Illustration from the PROCESS TF coil documentation[5] showing the only available
cable layout in the PROCESS code. Only the insulation and conduit currently contribute to
vertical stiffness. Only the vertical slices which contain mostly steel currently contribute to the
radial/toroidal stiffness. The compositing formulae are designed to allow more complete treatment
of these, and ease the addition of new cable types.

The coefficient of ε3,j is clearly the Poisson’s ratio. With some rearranging we get:

ν3,j,⊥ =
ν1,j,⊥

L1

E1,j
+ ν2,j,⊥

L2

E2,j

L1

E1,j
+ L2

E2,j

(26)

or more generally

νj,⊥,ser =

∑
νj,⊥L/Ej∑
L/Ej

= 〈νj,⊥〉L/Ej
(27)

where νj,⊥,ser is the smeared j,⊥ Poisson’s ratio of any number of series-composited (“ser”) mem-
bers, and the sum is over members.

6 Application of these formulae to the PROCESS TF coil
model

Many composite cable layouts may be considered by mixing and matching the compositing formulae.
The PROCESS TF coil winding pack is assumed to be constructed from the vertically ẑ aligned
unit cells depicted in Figure 4.[5]

6.1 Vertical properties, Ez, νz,⊥

A Fortran subroutine eyngparallel has been added to PROCESS file sctfcoil.f90 in git branch
1205-tf-cond-stiffness, which will presumably at some point be merged into the main develop
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branch. It takes three triplets of properties as arguments:

subroutine eyngparallel(eyoung_j_1, a_1, poisson_j_perp_1, & ! Inputs

eyoung_j_2, a_2, poisson_j_perp_2, & ! Inputs

eyoung_j_3, a_3, poisson_j_perp_3) ! Outputs

The declaration of the third triplet eyoung_j_3, a_3, poisson_j_perp_3 includes the intent(in out)

option, so many members may be successively composited in parallel by passing the same triplet
as triplets 2 and 3 of the arguments:

call eyngparallel(triplet1, triplet2, tripletOUT)

call eyngparallel(triplet3, tripletOUT, tripletOUT)

call eyngparallel(triplet4, tripletOUT, tripletOUT)

... etc.

So that tripletOUT would eventually have the smeared properties of all parallel-composited mem-
bers.

To reproduce the existing PROCESS vertical-property results, only one call of eyngparallel
would be required, as only the steel conduit and insulation contribute to the vertical stiffness. The
successive calling of eyngparallel above allows the easy addition of the cable stiffness, and any
other components that may some day be desired to include in the model.

6.2 Radial/toroidal properties, E⊥, ν⊥

A Fortran subroutine eyngseries has been added to PROCESS file sctfcoil.f90 in git branch
1205-tf-cond-stiffness, which will presumably at some point be merged into the main develop

branch. It takes three triplets of properties as arguments:

subroutine eyngseries(eyoung_j_1, a_1, poisson_j_perp_1, & ! Inputs

eyoung_j_2, a_2, poisson_j_perp_2, & ! Inputs

eyoung_j_3, a_3, poisson_j_perp_3) ! Outputs

The handling of the three triplets of arguments is identical to eyngparallel above, so that
the same successive call can be used to build up serially composited members of any number of
members.

To reproduce the existing PROCESS transverse-property results, only one call of eyngseries
would be required, as only the vertical slices[5] that are made up of mostly conduit steel are
considered in the transverse stiffness computation. The utility of successively calling eyngparallel

and eyngseries can now be seen, as it allows the addition of the other vertical slices in the following
manner:

10



! Outermost legs, insulation

eyoung_p = eyoung_ins

poisson_p = poisson_ins

a_working = 2*thicndut ! Thickness of the insulation

! Next inner legs, insulation and steel

call eyngseries(eyoung_steel, t_cable_oh + 2*t_cond_oh, poisson_steel, &

eyoung_ins, 2*thicndut, poisson_ins, &

eyoung_working, l_working, poisson_working)

! Add this to the properties we’re accumulating

call eyngparallel(eyoung_working, 2*t_cond_oh, poisson_working, &

eyoung_p, a_working, poisson_p, &

eyoung_p, a_working, poisson_p)

! Next inner leg, the cable space

! Add insulation and steel

call eyngseries(eyoung_steel, 2*t_cond_oh, poisson_steel, &

eyoung_ins, 2*thicndut, poisson_ins, &

eyoung_working, l_working, poisson_working)

! Add cable

call eyngseries(eyoung_cab, t_cable_oh, poisson_cab, &

eyoung_working, l_working, poisson_working, &

eyoung_working, l_working, poisson_working)

! Add this to the properties we’re accumulating

call eyngparallel(eyoung_working, t_cable_oh, poisson_working, &

eyoung_p, a_working, poisson_p, &

eyoung_p, a_working, poisson_p)

In this manner (if there are no typos), eyoung_p and poisson_p start out considering only the
outermost two vertical slices, which are entirely insulation. Then, eyoung_working and poisson_working

are set to the properties of the next-inner vertical slices, which is a serial-composite of a layer of insu-
lation and a layer of steel. This serial composite is then parallel composited back into eyoung_p and
poisson_p. Finally, a multi-step eyngseries call serial-composites first the insulation and steel,
then the cable space, of the innermost vertical slice, into eyoung_working and poisson_working.
A final eyngparallel parallel-composites these properties back into eyoung_p and poisson_p, and
we are done.

7 References
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